Curt Wittig
Encyclopedia
Curt Franklin Wittig is a Professor of Chemistry
Chemistry
Chemistry is the science of matter, especially its chemical reactions, but also its composition, structure and properties. Chemistry is concerned with atoms and their interactions with other atoms, and particularly with the properties of chemical bonds....

 and the holder of the Paul A. Miller
Paul A. Miller
Paul Miller was the 6th president of the Rochester Institute of Technology, succeeding Mark W. Ellingson, from 1969–1979. He oversaw the completion of the move of the campus to Henrietta and the steady growth of RIT between 1969 and 1981.-References:...

 Chair in the College of Letters, Arts, and Sciences
College of Arts and Sciences
A College of Arts and Sciences or School of Arts and Sciences is most commonly a unit within a university which focuses on instruction of the liberal arts and pure sciences, especially in North America and the Philippines, although they frequently include programs and faculty in fine arts, social...

 at the University of Southern California
University of Southern California
The University of Southern California is a private, not-for-profit, nonsectarian, research university located in Los Angeles, California, United States. USC was founded in 1880, making it California's oldest private research university...

 (USC).

Born and raised in Chicago, Illinois, Curt Wittig received his B.S. and Ph.D in Electrical Engineering from the University of Illinois in 1970.

Post-doctoral work (EE at USC, Chemistry at Cambridge (UK) and UC Berkeley) was followed by a faculty appointment in 1973 at USC in the EE Department. After becoming a professor in 1979, his interests changed and he moved to the Chemistry and Physics Departments in 1981, settling eventually in the Chemistry Department, where he has specialized in Physical Chemistry
Physical chemistry
Physical chemistry is the study of macroscopic, atomic, subatomic, and particulate phenomena in chemical systems in terms of physical laws and concepts...

 (Chemical Physics) ever since.

Wittig and his wife, Michele, live in Santa Monica, California.

Research focus

His earliest contributions were technological: invention of the continuous carbon monoxide chemical laser
Chemical laser
A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can achieve continuous wave output with power reaching to megawatt levels...

 in 1969, and development and demonstration of the so-called infrared process of laser isotope separation in the late 1970s. Interests then evolved to more fundamental studies. In the 1980s and 1990s his main contributions were in the areas of unimolecular reactions of polyatomic molecules, and photoinitiated
Photoinitiator
A photoinitiator is any chemical compound that decomposes into free radicals when exposed to light. Photoinitiators are found both in nature and in industry ....

 reactions in weakly bound complexes. The latter was acknowledged in 1993 with the Herbert P. Broida Prize in Atomic, Molecular, and Chemical Physics (given by the American Physical Society
American Physical Society
The American Physical Society is the world's second largest organization of physicists, behind the Deutsche Physikalische Gesellschaft. The Society publishes more than a dozen scientific journals, including the world renowned Physical Review and Physical Review Letters, and organizes more than 20...

); together they were acknowledged through the Bourke Lectures and Medal in 2000 (given by the Royal Society of Chemistry
Royal Society of Chemistry
The Royal Society of Chemistry is a learned society in the United Kingdom with the goal of "advancing the chemical sciences." It was formed in 1980 from the merger of the Chemical Society, the Royal Institute of Chemistry, the Faraday Society and the Society for Analytical Chemistry with a new...

, UK).

Recent research (including ongoing) addresses issues in amorphous solid water, photophysics in doped superfluid
Superfluid
Superfluidity is a state of matter in which the matter behaves like a fluid without viscosity and with extremely high thermal conductivity. The substance, which appears to be a normal liquid, will flow without friction past any surface, which allows it to continue to circulate over obstructions and...

 helium
Helium
Helium is the chemical element with atomic number 2 and an atomic weight of 4.002602, which is represented by the symbol He. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas that heads the noble gas group in the periodic table...

 nanodroplets, complex photochemistry
Photochemistry
Photochemistry, a sub-discipline of chemistry, is the study of chemical reactions that proceed with the absorption of light by atoms or molecules.. Everyday examples include photosynthesis, the degradation of plastics and the formation of vitamin D with sunlight.-Principles:Light is a type of...

 and photophysics of polyatomic molecules, and theories of particle statistics
Particle statistics
Particle statistics refers to the particular description of particles in statistical mechanics.-Classical statistics:In classical mechanics all the particles in the system are considered distinguishable. This means that one can label and track each individual particle in a system...

 and geometric phases.

Book chapters

  1. Gas trapping in ice and its release upon warming; A. Bar-Nun, D. Laufer, O. Rebolledo-Mayoral, S. Malyk, H. Reisler, C. Wittig; Solar System Ices, M. Gudipati, editor (World Scientific, Singapore, 2010).
  2. Fundamental Aspects of Molecular Photochemistry; C. Wittig; Encyclopedia of Physical Science and Technology, Third Edition, (Academic Press, 2001).
  3. Dynamics of ground state bimolecular reactions; C. Wittig and A.H. Zewail; Atomic and Molecular Clusters, E. Bernstein, editor (Oxford Press, 1996).
  4. Regioselective photochemistry in weakly bonded complexes; S.K. Shin, Y. Chen, E. Böhmer and C. Wittig; The Dye Laser: 20 Years (Springer-Verlag, 1992) 57-76.
  5. State resolved simple bond fission reactions: experiment and theory; H. Reisler and C. Wittig; Advances in Kinetics and Dynamics, Vol. 1, J.R. Barker, editor (JAI Press, Greenwich, 1992) 139-185.
  6. Photoinitiated reactions in weakly bonded complexes: entrance channel specificity; Y. Chen, G. Hoffmann, S.K. Shin, D. Oh, S. Sharpe, Y.P. Zeng, R.A. Beaudet and C. Wittig; Advances in Molecular Vibrations and Collision Dynamics, Vol. 1, Part B, J.M. Bowman, editor (JAI Press, Greenwich, 1992) 187-229.
  7. NO(X2Π) product state distributions in molecule-surface dissociative scattering: n,i-C3F7NO from MgO(100); E. Kolodney, P.S. Powers, L. Hodgson, H. Reisler and C. Wittig; Mode Selective Chemistry, J. Jortner et al., editors (Kluwer Academic Publishers, Netherlands, 1991) 443-455.
  8. Photoinitiated reactions in weakly bonded complexes; S.K. Shin, Y. Chen, S. Nickolaisen, S.W. Sharpe, R.A. Beaudet and C. Wittig; Advances in Photochemistry, Vol. 16, D. Volman, G. Hammond and D. Neckers, editors (Wiley, 1991) 249-363.
  9. Photodissociation processes in NO-containing molecules; H. Reisler, M. Noble and C. Wittig; Molecular Photodisso­cia­tion Dynamics, J. Baggott and M.N.R. Ashfold, editors (Royal Society of Chemistry, 1987) 139-176.
  10. Multiphoton ionization of molecules; H. Reisler and C. Wittig; Advances in Chemical Physics LX, K.P. Lawley, editor (1985) 1-30.


Selected articles

  1. C. Wittig, The Landau-Zener formula, J. Phys. Chem. B 109, 8428 (2005).'
  2. J. Underwood, D. Chastaing, S. Lee, and C. Wittig, Heavy hydrides: H2Te ultraviolet photochemistry, J. Chem. Phys. 123, 84312 (2005).'
  3. E. Polyakova, D. Stolyarov, and C. Wittig, Multiple photon excitation and ionization of NO in and on helium droplets, J. Chem. Phys. 124, 214308 (2006).'
  4. G. Kumi, S. Malyk, S. Hawkins, H. Reisler, and C. Wittig , Amorphous solid water films: Transport and host-guest interactions with CO2 and N2O dopants, J. Phys. Chem. A 110, 2097-2105 (2006).'
  5. C. Wittig and I. Bezel, Effective Hamiltonian models and unimolecular decomposition, J. Phys. Chem. B 100, 19850-19860 (2006).'
  6. S. Malyk, G. Kumi, H. Reisler, and C. Wittig , Trapping and Release of CO2 guest molecules in amorphous ice, J. Phys. Chem. A 111, 13365-13370 (2008).'
  7. C. Wittig , Statistics of indistinguishable particles, J. Phys. Chem. A 113, 7244-7252, Benny Gerber Festschrift (2009).'
  8. L. A. Smith-Freeman, W. H. Schroeder, and C. Wittig, AsH2 ultraviolet photochemistry, J. Phys. Chem. A 113, 2158-2164 (2009).'
  9. A. Bar-Nun, D. Laufer, O. Rebolledo-Mayoral, S. Malyk, H. Reisler, C. Wittig, Gas trapping in ice and its release upon warming, Solar System Ices, M. Gudipati, Editor (World Scientific, Singapore, 2010).
  10. C. Wittig, Photon and electron spins, J. Phys. Chem. A 113, 15320-15327, Vincenzo Aquilanti Festschrift (2010).'


Awards and honors

  • Fellow, American Association for the Advancement of Science (2005);
  • Eminent Scholar Lecturer, University of Arizona (2005);
  • Raubenheimer Outstanding Faculty Award: Teaching, Research and Service (2003);
  • Bourke Lecturer (plus Bourke medal), Royal Society of Chemistry: University of Birmingham, University of Edinburgh, and University of Leeds (2000)
  • American Physical Society
    American Physical Society
    The American Physical Society is the world's second largest organization of physicists, behind the Deutsche Physikalische Gesellschaft. The Society publishes more than a dozen scientific journals, including the world renowned Physical Review and Physical Review Letters, and organizes more than 20...

    's Herbert P. Broida Prize Recipient (1993)

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK