Controlled Aerodynamic Instability Phenomena
Encyclopedia
The term controlled aerodynamic instability phenomena was first used by Cristiano Augusto Trein in the Nineteenth KKCNN Symposium on Civil Engineering held in Kyoto – Japan in 2006. The concept is based on the idea that aerodynamic instability phenomena, such as Kármán vortex street, flutter, galloping and buffeting, can be driven into a controlled motion and be used to extract energy from the flow, becoming an alternative approach for wind power
Wind power
Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electricity, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships....

 generation systems.

Justification

Nowadays, when a discussion is established around the theme wind power generation, what is promptly addressed is the image of a big wind turbine
Wind turbine
A wind turbine is a device that converts kinetic energy from the wind into mechanical energy. If the mechanical energy is used to produce electricity, the device may be called a wind generator or wind charger. If the mechanical energy is used to drive machinery, such as for grinding grain or...

 getting turned by the wind. However, some alternative approaches have already been proposed in the latter decades, showing that wind turbines are not the only possibility for the exploitation of the wind for power generation purposes.

In 1977 Jeffery experimented with an oscillating aerofoil system based on a vertically-mounted pivoting wing which flapped in the wind. Farthing discovered that this free flutter could automatically cease for high wind protection and developed floating and pile based models for pumping surface and well water as well as compressing air with auxiliary battery charging
Battery charger
A battery charger is a device used to put energy into a secondary cell or rechargeable battery by forcing an electric current through it.The charge current depends upon the technology and capacity of the battery being charged...

. McKinney and DeLaurier in 1981 proposed a system called wingmill, based on a rigid horizontal airfoil with articulated pitching and plunging to extract energy from the flow. This system has stimulated Moores in 2003 to conduct further investigations on applications of such idea.

Following the same trend, other studies have already been carried out, for example the flutter power generation system proposed by Isogai et al. in 2003, which uses the flutter instability caused by the wind on an aerofoil to extract energy from the flow. In this branch, Matsumoto et al. went further, proposing enhancements for that system and assessing the feasibility of its usage with bluff bodies. The "kite motors" of Dave Santos utilize aerofoil instabilities.

Controlled aerodynamic instability phenomena

The wind interacts with the obstacles it reaches in its way by transferring a part of its energy to those interactions, which are converted into forces over the bodies, leading them to different levels of motion, which are directly dependent on their aeroelastic
Aeroelasticity
Aeroelasticity is the science which studies the interactions among inertial, elastic, and aerodynamic forces. It was defined by Arthur Collar in 1947 as "the study of the mutual interaction that takes place within the triangle of the inertial, elastic, and aerodynamic forces acting on structural...

 and geometric characteristics. A large amount of studies and researches has been conducted concerning these interactions and their dependencies, aiming the understanding of the aerodynamic phenomena that arise due to them, such as the Kármán vortex street, galloping, buffeting and flutter, mainly regarding bluff bodies. By the understanding of such phenomena it is possible to predict instabilities and their consequent motions, feeding the designers with the data they need in order to arrange the structures properly.

In the great majority of the cases – e.g.: in civil buildings – such motions are useless and undesirable, in a manner that all the designing approaches are focused on avoiding them. However these instabilities may also be used in a profitable manner: if they are controlled and driven to a predictable motion, they can provide mechanical power supply to run, for example, turbine
Turbine
A turbine is a rotary engine that extracts energy from a fluid flow and converts it into useful work.The simplest turbines have one moving part, a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades, or the blades react to the flow, so that they move and...

s, machinery and electricity generators.

So, by using the knowledge acquired by now regarding those aerodynamic instabilities and by developing new features, it is possible to propose ways to stimulate them to an optimal state, using them for power generation purposes. That way, alternative approaches to the windmill may be proposed and developed. Farthing Econologica applies the practical requirements for a windmill to greatly whittle down the possibilities.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK