
Collision response
Encyclopedia
In the context of classical mechanics
simulations and physics engines employed within video games, collision response deals with models and algorithms for simulating the changes in the motion of two solid bodies following collision and other forms of contact.
techniques. On collision, the kinetic properties of two such bodies seem to undergo an instantaneous change, typically resulting in the bodies rebounding away from each other, sliding, or settling into relative static contact, depending on the elasticity of the materials and the configuration of the collision.
During the compression and expansion phases of two colliding bodies, each body generates reactive forces on the other at the points of contact, such that the sum reaction forces of one body are equal in magnitude but opposite in direction to the forces of the other, as per the Newtonian principle of action and reaction. If the effects of friction are ignored, a collision is seen as affecting only the component of the velocities that are directed along the contact normal and as leaving the tangential components unaffected
between two given materials is modeled as the ratio
of the relative post-collision speed of a point of contact along the contact normal, with respect to the relative pre-collision speed of the same point along the same normal. These coefficients are typically determined empirically for different material pairs, such as wood against concrete or rubber against wood. Values for
close to zero indicate inelastic collisons such as a piece of soft clay hitting the floor, whereas values close to one represent highly elastic collisions, such as a rubber ball bouncing off a wall. The kinetic energy loss is relative to one body with respect to the other. Thus the total momentum of both bodies with respect to some common reference is unchanged after the collision, in line with the principle of conservation of momentum.
To overcome the friction between two bodies in static contact, the surfaces must somehow lift away from each other. Once in motion, the degree of surface affinity is reduced and hence bodies in sliding motion tend to offer lesser resistance to motion. These two categories of friction are respectively termed static friction and dynamic friction.
, dependent on time
, acting on a body of assumed constant mass
for a time interval
generates a change in the body’s momentum
, where
is the resulting change in velocity. The change in momentum, termed an impulse
and denoted by
is thus computed as
For fixed impulse
, the equation suggests that
, that is, a smaller time interval must be compensated by a stronger reaction force to achieve the same impulse. When modelling a collision between idealized rigid bodies, it is impractical to simulate the compression and expansion phases of the body geometry over the collision time interval. However, by assuming that a suitable force
can be found such that the limit
exists and is equal to
, the notion of instantaneous impulses may be introduced to simulate an instantaneous change in velocity after a collision.
over the interval of collision
may hence be represented by an instantaneous reaction impulse
, computed as
By deduction from the principle of action and reaction, if the collision impulse applied by the first body on the second body at a contact point
is
, the counter impulse applied by the second body on the first is
. The decomposition
into the impulse magnitude
and direction along the contact normal
and its negation
allows for the derivation of a formula to compute the change in linear and angular velocities of the bodies resulting from the collision impulses. In the subsequent formulas,
is always assumed to point away from body 1 and towards body 2 at the contact point.
Assuming the collision impulse magnitude
is given, the change in the bodies’ velocities at the point of contact is computed as follows
where, for the
th body,
is the pre-collision velocity of the point of contact,
is its post-collision velocity and
is the mass.
The impulse yields a change in both the linear and angular components of the bodies' velocities. The angular components are calculated as follows:
where, for the
th body,
is the angular pre-collision velocity,
is the angular post-collision velocity,
is the inertia tensor in the world frame of reference, and
is offset of the shared contact point
from the centre of mass.
The velocities
of the bodies at the point of contact may be computed in terms of the respective linear and angular velocities, using
for
. The coefficient of restitution
relates the pre-collision relative velocity
of the contact point to the post-collision relative velocity
along the contact normal
as follows
Substituting equations (1a), (1b), (2a), (2b) and (3) into equation (4) and solving for the reaction impulse magnitude
yields
and angular velocities
is as follows:
and dynamic friction
such that
. These coefficients describe the two types of friction forces in terms of the reaction forces acting on the bodies. More specifically, the static and dynamic friction force magnitudes
are computed in terms of the reaction force magnitude
as follows
The value
defines a maximum magnitude for the friction force required to counter the tangential component of any external sum force applied on a relatively static body, such that it remains static. Thus, if the external force is large enough, static friction is unable to fully counter this force, at which point the body gains velocity and becomes subject to dynamic friction of magnitude
acting against the sliding velocity.
The Coulomb friction model effectively defines a friction cone within which the tangential component of a force exerted by one body on the surface of another in static contact, is countered by an equal and opposite force such that the static configuration is maintained. Conversely, if the force falls outside the cone, static friction gives way to dynamic friction.
Given the contact normal
and relative velocity
of the contact point, a tangent vector
, orthogonal to
, may be defined such that
where
is the sum of all external forces on the body. The multi-case definition of
is required for robustly computing the actual friction force
for both the general and particular states of contact. Informally, the first case computes the tangent vector along the relative velocity component perpendicular to the contact normal
. If this component is zero, the second case derives
in terms of the tangent component of the external force
. If there is no tangential velocity or external forces, than no friction is assumed, and
may be set to the zero vector. Thus,
is computed as
Equations (6a), (6b), (7) and (8) describe the Coulomb friction model in terms of forces. By adapting the argument for instantaneous impulses, an impulse-based version of the Coulomb friction model may be derived, relating a frictional impulse
, acting along the tangent
, to the reaction impulse
. Integrating (6a) and (6b) over the collision time interval
yields
where
is the magnitude of the reaction impulse acting along contact normal
. Similarly, by assuming
constant throughout the time interval, the integration of (8) yields
Equations (5) and (10) define an impulse-based contact model that is ideal for impulse-based simulations. When using this model, care must be taken in the choice of
and
as higher values may introduce additional kinetic energy into the system.
Classical mechanics
In physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces...
simulations and physics engines employed within video games, collision response deals with models and algorithms for simulating the changes in the motion of two solid bodies following collision and other forms of contact.
Rigid Body Contact
Two rigid bodies in unconstrained motion, potentially under the action of forces, may be modelled by solving their equations of motion using numerical integrationNumerical integration
In numerical analysis, numerical integration constitutes a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of...
techniques. On collision, the kinetic properties of two such bodies seem to undergo an instantaneous change, typically resulting in the bodies rebounding away from each other, sliding, or settling into relative static contact, depending on the elasticity of the materials and the configuration of the collision.
Contact Forces
The origin of the rebound phenomenon, or reaction, may be traced to the behaviour of real bodies that, unlike their perfectly rigid idealised counterparts, do undergo minor compression on collision, followed by expansion, prior to separation. The compression phase converts the kinetic energy of the bodies into potential energy and to an extent, heat. The expansion phase converts the potential energy back to kinetic energy.During the compression and expansion phases of two colliding bodies, each body generates reactive forces on the other at the points of contact, such that the sum reaction forces of one body are equal in magnitude but opposite in direction to the forces of the other, as per the Newtonian principle of action and reaction. If the effects of friction are ignored, a collision is seen as affecting only the component of the velocities that are directed along the contact normal and as leaving the tangential components unaffected
Reaction
The degree of relative kinetic energy retained after a collision, termed the restitution, is dependent on the elasticity of the bodies‟ materials. The coefficient of restitutionCoefficient of restitution
The coefficient of restitution of two colliding objects is a fractional value representing the ratio of speeds after and before an impact, taken along the line of the impact...
between two given materials is modeled as the ratio


Friction
Another important contact phenomenon is surface-to-surface friction, a force that impedes the relative motion of two surfaces in contact, or that of a body in a fluid. In this section we discuss surface-to-surface friction of two bodies in relative static contact or sliding contact. In the real world, friction is due to the imperfect microstructure of surfaces whose protrusions interlock into each other, generating reactive forces tangential to the surfaces.To overcome the friction between two bodies in static contact, the surfaces must somehow lift away from each other. Once in motion, the degree of surface affinity is reduced and hence bodies in sliding motion tend to offer lesser resistance to motion. These two categories of friction are respectively termed static friction and dynamic friction.
Impulse-Based Contact Model
A force





Impulse
In classical mechanics, an impulse is defined as the integral of a force with respect to time. When a force is applied to a rigid body it changes the momentum of that body...
and denoted by

For fixed impulse



exists and is equal to

Impulse-Based Reaction Model
The effect of the reaction force


By deduction from the principle of action and reaction, if the collision impulse applied by the first body on the second body at a contact point








Assuming the collision impulse magnitude

![]() |
(1a) | |
![]() |
(1b) |
where, for the




The impulse yields a change in both the linear and angular components of the bodies' velocities. The angular components are calculated as follows:
![]() |
(2a) | |
![]() |
(2b) |
where, for the






The velocities

![]() |
(3) |
for





![]() |
(4) |
Substituting equations (1a), (1b), (2a), (2b) and (3) into equation (4) and solving for the reaction impulse magnitude

![]() |
(5) |
Computing Impulse-Based Reaction
Thus, the procedure for computing the post-collision linear velocities

- Compute the reaction impulse magnitude
in terms of
,
,
,
,
,
,
,
and
using equation (5)
- Compute the reaction impulse vector
in terms of its magnitude
and contact normal
using
.
- Compute new linear velocities
in terms of old velocities
, masses
and reaction impulse vector
using equations (1a) and (1b)
- Compute new angular velocities
in terms of old angular velocities
, interia tensors
and reaction impulse vector
using equations (2a) and (2b)
Impulse-Based Friction Model
One of the most popular models for describing friction is the Coulomb friction model. This model defines coefficients of static friction




![]() |
(6a) | |
![]() |
(6b) |
The value


The Coulomb friction model effectively defines a friction cone within which the tangential component of a force exerted by one body on the surface of another in static contact, is countered by an equal and opposite force such that the static configuration is maintained. Conversely, if the force falls outside the cone, static friction gives way to dynamic friction.
Given the contact normal




![]() |
(7) |
where








![]() |
(8) |
Equations (6a), (6b), (7) and (8) describe the Coulomb friction model in terms of forces. By adapting the argument for instantaneous impulses, an impulse-based version of the Coulomb friction model may be derived, relating a frictional impulse




![]() |
(9a) | |
![]() |
(9b) |
where



![]() |
(10) |
Equations (5) and (10) define an impulse-based contact model that is ideal for impulse-based simulations. When using this model, care must be taken in the choice of

