Borel regular measure
Encyclopedia
In mathematics
, an outer measure
μ on n-dimension
al Euclidean space
Rn is called Borel regular if the following two conditions hold:
An outer measure satisfying only the first of these two requirements is called a Borel measure, while an outer measure satisfying only the second requirement is called a regular measure.
The Lebesgue outer measure on Rn is an example of a Borel regular measure.
It can be proved that a Borel Regular measure, although introduced here as an outer measure (only countably subadditive
), becomes a full measure
(countably additive) if restricted to the Borel sets
.
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, an outer measure
Outer measure
In mathematics, in particular in measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. A general theory of outer measures was first introduced by...
μ on n-dimension
Dimension
In physics and mathematics, the dimension of a space or object is informally defined as the minimum number of coordinates needed to specify any point within it. Thus a line has a dimension of one because only one coordinate is needed to specify a point on it...
al Euclidean space
Euclidean space
In mathematics, Euclidean space is the Euclidean plane and three-dimensional space of Euclidean geometry, as well as the generalizations of these notions to higher dimensions...
Rn is called Borel regular if the following two conditions hold:
- Every Borel setBorel setIn mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement...
B ⊆ Rn is μ-measurable in the sense of Carathéodory's criterion: for every A ⊆ Rn,
-
-
- For every set A ⊆ Rn (which need not be μ-measurable) there exists a Borel set B ⊆ Rn such that A ⊆ B and μ(A) = μ(B).
-
An outer measure satisfying only the first of these two requirements is called a Borel measure, while an outer measure satisfying only the second requirement is called a regular measure.
The Lebesgue outer measure on Rn is an example of a Borel regular measure.
It can be proved that a Borel Regular measure, although introduced here as an outer measure (only countably subadditive
Outer measure
In mathematics, in particular in measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. A general theory of outer measures was first introduced by...
), becomes a full measure
Measure (mathematics)
In mathematical analysis, a measure on a set is a systematic way to assign to each suitable subset a number, intuitively interpreted as the size of the subset. In this sense, a measure is a generalization of the concepts of length, area, and volume...
(countably additive) if restricted to the Borel sets
Borel set
In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement...
.