Beecher’s Trilobite type preservation
Encyclopedia
The preservational regime of Beecher's Trilobite Bed (Upper Ordovician
Ordovician
The Ordovician is a geologic period and system, the second of six of the Paleozoic Era, and covers the time between 488.3±1.7 to 443.7±1.5 million years ago . It follows the Cambrian Period and is followed by the Silurian Period...

) and other similar localities involves the replacement of soft tissues with pyrite
Pyrite
The mineral pyrite, or iron pyrite, is an iron sulfide with the formula FeS2. This mineral's metallic luster and pale-to-normal, brass-yellow hue have earned it the nickname fool's gold because of its resemblance to gold...

, producing a three dimensional fossil
Fossil
Fossils are the preserved remains or traces of animals , plants, and other organisms from the remote past...

 replicating the anatomy of the original organism. Only gross morphological information is preserved (unlike Orsten
Orsten
The Upper Cambrian Orsten fauna includes fossilized organisms preserved in Orsten lagerstätten, notably at Kinnekulle and on the island of Öland, all in Sweden....

 type phosphate
Phosphate
A phosphate, an inorganic chemical, is a salt of phosphoric acid. In organic chemistry, a phosphate, or organophosphate, is an ester of phosphoric acid. Organic phosphates are important in biochemistry and biogeochemistry or ecology. Inorganic phosphates are mined to obtain phosphorus for use in...

 replacement), although the fossils are compressed some relief is preserved (unlike Burgess Shale type preservation
Burgess shale type preservation
The Burgess Shale of British Columbia is famous for its exceptional preservation of mid-Cambrian organisms. Around 40 other sites have been discovered of a similar age, with soft tissues preserved in a similar, though not identical, fashion...

).

The pyrite formed in voids left when soft tissue had decayed, and the tough exoskeleton formed a cavity which could be filled by euhedral pyrite. Pyrite replacement of soft tissue can only occur in exceptional circumstances of sediment chemistry when there is a low organic content, but a high concentration of dissolved iron.

When a carcass is buried in such sediment, sulfate-reducing anaerobic bacteria break down its organic matter producing sulfide. The high concentration of iron in the sediment converts this to iron mono-sulfide. Finally, aerobic bacteria convert this by oxidation to pyrite. The requirement of early anaerobic and later aerobic bacteria means that the pyritisation must occur in the upper levels of the sediment, close to the aerobic-anaerobic interface. If the organic content of the sediment is too high the dissolved iron precipitates in the sediment and not in the carcass. Seawater sulfate ions diffusing toward animal carcasses enabled sulfate-reducing bacteria to oxidize the reactive organic matter of these remains, but the sulfide produced reacted promptly with the abundant Fe2+ ions of the pore water and pyrite precipitated right on the organic remains.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK