Arthropod head problem
Encyclopedia
The arthropod head problem is a long-standing zoological dispute concerning the segmental
Segmentation (biology)
Segmentation in biology refers to either a type of gastrointestinal motility or the division of some animal and plant body plans into a series of repetitive segments. This article will focus on the segmentation of animal body plans, specifically using the examples of the phyla Arthropoda,...

 composition of the head
Head
In anatomy, the head of an animal is the rostral part that usually comprises the brain, eyes, ears, nose and mouth . Some very simple animals may not have a head, but many bilaterally symmetric forms do....

s of the various arthropod
Arthropod
An arthropod is an invertebrate animal having an exoskeleton , a segmented body, and jointed appendages. Arthropods are members of the phylum Arthropoda , and include the insects, arachnids, crustaceans, and others...

 groups, and how they are evolutionarily related to each other. While the dispute has historically centered on the exact make-up of the insect head, it has been widened to include other living arthropods such as the crustacean
Crustacean
Crustaceans form a very large group of arthropods, usually treated as a subphylum, which includes such familiar animals as crabs, lobsters, crayfish, shrimp, krill and barnacles. The 50,000 described species range in size from Stygotantulus stocki at , to the Japanese spider crab with a leg span...

s and chelicerates; and fossil forms, such as the many arthropods known from exceptionally preserved Cambrian faunas. While the topic has classically been based on insect
Insect
Insects are a class of living creatures within the arthropods that have a chitinous exoskeleton, a three-part body , three pairs of jointed legs, compound eyes, and two antennae...

 embryology
Embryology
Embryology is a science which is about the development of an embryo from the fertilization of the ovum to the fetus stage...

, in recent years a great deal of developmental molecular data has become available. Dozens of more or less distinct solutions to the problem, dating back to at least 1897, have been published, including several in the 2000s.

The arthropod head problem is popularly known as the "endless dispute", the title of a famous paper on the subject by Jacob G. Rempel in 1975, referring to its apparently intractable nature. Although some progress has been made since that time, the precise nature of especially the labrum
Labrum (arthropod mouthpart)
The labrum is a flap-like structure that lies immediately in front of the mouth in almost all extant euarthropods, the general exception being provided by the probable chelicerate-relatives the pycnogonids. It has proved to be by far the most controversial of all arthropod head structures. It is...

 and the pre-oral region of arthropods remain highly controversial.

Background

According to recent research, it has been suggested that some key events in the evolution of the arthropod body resulted from changes in certain Hox genes' DNA sequences. The trunks
Torso
Trunk or torso is an anatomical term for the central part of the many animal bodies from which extend the neck and limbs. The trunk includes the thorax and abdomen.-Major organs:...

 of arthropods are built out of repeated segments
Segmentation (biology)
Segmentation in biology refers to either a type of gastrointestinal motility or the division of some animal and plant body plans into a series of repetitive segments. This article will focus on the segmentation of animal body plans, specifically using the examples of the phyla Arthropoda,...

, which are typically associated with various structures such as a pair of appendages, apodemes for muscle attachment, ganglia and, at least embryologically, coelomic cavities
Coelom
The coelom is a fluid-filled cavity formed within the mesoderm. Coeloms developed in triploblasts but were subsequently lost in several lineages. Loss of coelom is correlated with reduction in body size...

. While many arthropod segments are modified to a greater or lesser extent (for example, only three of the insect thorax and abdominal segments typically bear appendages), it is widely assumed that the ancestral state was for all of the segments to be nearly identical. However, while the segmental organisation of the trunks of adult arthropods can be usually readily seen, that of the head is much less obvious. Arthropod heads are typically fused capsules that bear a variety of complex structures such as the eyes, antennae and mouth parts. The challenge that the arthropod head problem has to address is to what extent the various structures of the arthropod head can be resolved into a set of hypothetical ancestral segments. Given the high compaction and complexity of adult arthropod heads, much attention has been directed towards understanding the developmental processes that give rise to them, in the hope that they will reveal their segmental organisation more clearly.

Head components

A typical insect
Insect
Insects are a class of living creatures within the arthropods that have a chitinous exoskeleton, a three-part body , three pairs of jointed legs, compound eyes, and two antennae...

 head possesses a pair of antennae
Antenna (biology)
Antennae in biology have historically been paired appendages used for sensing in arthropods. More recently, the term has also been applied to cilium structures present in most cell types of eukaryotes....

; eyes; mandibles
Mandible (arthropod)
thumb|250px|The mandibles of a [[Bull ant]]The mandible of an arthropod is either of a pair of mouthparts used for biting, cutting and holding food. Mandibles are often simply referred to as jaws. Mandibles are present in the extant subphyla Myriapoda , Crustacea and Hexapoda...

, labrum
Labrum (arthropod mouthpart)
The labrum is a flap-like structure that lies immediately in front of the mouth in almost all extant euarthropods, the general exception being provided by the probable chelicerate-relatives the pycnogonids. It has proved to be by far the most controversial of all arthropod head structures. It is...

, maxillae
Maxilla (arthropod)
In arthropods, the maxillae are paired structures present on the head as mouthparts in members of the clade Mandibulata, used for tasting and manipulating food. Embryologically, the maxillae are derived from the 4th and 5th segment of the head and the maxillary palps; segmented appendages extending...

 and labium (the latter four forming the cluster of "mouth parts", no. 32. in the diagram). Lying above the oesophagus is the brain or supraesophageal ganglion
Supraesophageal ganglion
The supraesophageal ganglion is the first part of the insect and fish central nervous system. It receives and processes information from the first, second, and third metameres. The supraesophageal ganglion lies dorsal to the esophagus and consists of three parts: the protocerebrum , the...

, divided into three pairs of ganglia: the protocerebrum
Supraesophageal ganglion
The supraesophageal ganglion is the first part of the insect and fish central nervous system. It receives and processes information from the first, second, and third metameres. The supraesophageal ganglion lies dorsal to the esophagus and consists of three parts: the protocerebrum , the...

, deutocerebrum
Supraesophageal ganglion
The supraesophageal ganglion is the first part of the insect and fish central nervous system. It receives and processes information from the first, second, and third metameres. The supraesophageal ganglion lies dorsal to the esophagus and consists of three parts: the protocerebrum , the...

 and tritocerebrum
Supraesophageal ganglion
The supraesophageal ganglion is the first part of the insect and fish central nervous system. It receives and processes information from the first, second, and third metameres. The supraesophageal ganglion lies dorsal to the esophagus and consists of three parts: the protocerebrum , the...

 from front to back (collectively no. 5 in the diagram). Nerves from the protocerebrum lead to the large compound eyes; from the deuterocerebrum to the antennae; and from the tritocerebrum to the labrum
Labrum (arthropod mouthpart)
The labrum is a flap-like structure that lies immediately in front of the mouth in almost all extant euarthropods, the general exception being provided by the probable chelicerate-relatives the pycnogonids. It has proved to be by far the most controversial of all arthropod head structures. It is...

 and stomatogastric nervous system
Stomatogastric nervous system
The Stomatogastric Nervous System is a commonly studied neural network composed of several ganglia in arthropods that controls the motion of the gut and foregut. The network of neurons acts as a central pattern generator. It is a model system for motor pattern generation because of the small...

. Circum-oesophageal connectives lead from the tritocerebrum around the gut to connect the brain to the ventral ganglionated nerve cord: nerves from the first three pairs of ganglia lead to the mandibles, maxillae and labium, respectively. The position of the mouth and the circum-oesophageal connectives allows a distinction to be made between pre- and post-oral structures; although it should be borne in mind that because structures can move around during development, a pre-oral position of a structure in the adult does not necessarily prove that its developmental origin is from there. The myriapod head is very similar to that of the insects.

The crustacean
Crustacean
Crustaceans form a very large group of arthropods, usually treated as a subphylum, which includes such familiar animals as crabs, lobsters, crayfish, shrimp, krill and barnacles. The 50,000 described species range in size from Stygotantulus stocki at , to the Japanese spider crab with a leg span...

 head is broadly similar to that of the insects, but possesses, in addition, a second pair of antennae that are innervated from the tritocerebrum. In place of the labium, crustaceans possess a second pair of maxillae.

Chelicerate head structures differ considerably from those of mandibulates (i.e. insects, crustaceans and myriapods); they possess eyes and a single pair of grasping appendages innervated from the brain, plus a labrum-like structure. Behind the mouth lies another pair of mouthparts, the pedipalps, and behind them lie the series of walking limbs. In chelicerates, the leg-bearing segments are fused with the anterior segments to form a prosoma, so that in living arthropods a distinct head only exists in mandibulates.

The acron concept

The arthropod head problem has until recently been predicated on the Articulata
Articulata Hypothesis
The Articulata Hypothesis is the grouping in a higher taxon of animals with segmented bodies, consisting of Annelida and Panarthropoda. This theory states that these groups are descended from a common segmented ancestor...

 theory, i.e. that the arthropods and annelids are close relatives. Although arthropods are essentially direct developers that do not possess a trochophore
Trochophore
A trochophore is a type of free-swimming planktonic marine larva with several bands of cilia.By moving their cilia rapidly, a water eddy is created. In this way they control the direction of their movement...

-like larva
Larva
A larva is a distinct juvenile form many animals undergo before metamorphosis into adults. Animals with indirect development such as insects, amphibians, or cnidarians typically have a larval phase of their life cycle...

, the annelids do. During annelid metamorphosis
Metamorphosis
Metamorphosis is a biological process by which an animal physically develops after birth or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation...

, segments are added close to the posterior of the body, behind the mouth; whereas the brain is derived from the episphere
Trochophore
A trochophore is a type of free-swimming planktonic marine larva with several bands of cilia.By moving their cilia rapidly, a water eddy is created. In this way they control the direction of their movement...

 or region in front of the mouth. Recognition of this led to the concept of a primary, non-segmental component of the body in annelids known as the acron
Prostomium
Prostomium is the first body segment in annelid worms. It is in front of the mouth, being usually a small shelf- or lip-like extension over the dorsal side of the mouth. It sometimes bears antennae and eyes. It often functions like a kind of overlip when the animal is feeding...

 being developed, from which the brain is ultimately derived. Because the arthropod and annelid heads, in the light of the Articulata theory, were assumed to be structurally homologous in some way, the arthropod head was also often considered to incorporate a non-segmental acronal component. Taking the homology between annelid and arthropod heads at face value, Swedish workers such as Hanström and Holmgren assumed that a large part of the arthropod head must correspond to the acron, a view followed later by several prominent American insect workers such as Butt and Snodgrass. They proposed that all pre-oral structures in insects were non-segmental, although such a view is at odds with the preoral position of apparently bona fide appendages such as the antennae. A less extreme set of theories propose that only the protocerebrum and associated structures should be considered to be acronal.

The view that the arthropod head must contain an acronal remnant has been shaken by the relatively recent revision of protostome
Protostome
Protostomia are a clade of animals. Together with the deuterostomes and a few smaller phyla, they make up the Bilateria, mostly comprising animals with bilateral symmetry and three germ layers...

 phylogeny, which has dismantled the Articulata and placed the arthropods together with a group of unsegmented worms often referred to as the Cycloneuralia
Cycloneuralia
Cycloneuralia is a clade of ecdysozoan animals including the Scalidophora and the Nematoida . Its sister group is the panarthropoda....

 in the so-called Ecdysozoa
Ecdysozoa
Ecdysozoa is a group of protostome animals, including Arthropoda , Nematoda, and several smaller phyla. They were first defined by Aguinaldo et al. in 1997, based mainly on trees constructed using 18S ribosomal RNA genes...

. All members of the Ecdysozoa are direct developers without a trochophore, and the cycloneuralians have terminal mouths. As a result, the idea of the arthropods having inherited a preoral acron from their ancestors seems less likely.

Molecular development and the arthropod head problem

The study of how developmental genes are expressed during embryogenesis has become an important new tool in the last twenty years for understanding the structure and evolution of morphology. The arthropod head problem has been tackled in three main ways in this regard, first by using genetic segmental markers to probe the obscure region in front of the mouth, especially in insects; second by looking at Hox gene expression patterns to detect patterns of homology between different arthropods; and third, by studying gene expression in particular features (especially the labrum) to determine its appendiculate or other status. Because all arthropods have the same complement of nine Hox loci, the morphological diversification observed is caused by these genes being expressed at different areas and times.

Areas of agreement

It is widely agreed that the insect, myriapod and crustacean heads are very similar. The apparent lack of a second antenna in insects and myriapods is explained by the idea that this appendage has been lost, leaving an appendage-less segment known as the intercalary segment. Modern phylogenies do not in general support an insect-myriapod relationship, suggesting that the second antenna has been lost independently in each group, perhaps as a result of a convergent adaptation to life on land. Furthermore, there is general agreement that the mandibles, first maxillae and labium/second maxillae each represent a post-oral segment; and that the first antenna represents a preoral segment.

Areas of disagreement

Areas of disagreement can be grouped into three categories: the nature of the pre-antennal region in mandibulates; the nature of the labrum; and the relationship between the chelicerate and mandibulate anterior segments.

Nature of the preoral region

The degree to which the area in front of the mouth is segmented remains one of the major controversies in the arthropod head problem. As already mentioned, earlier workers often considered the entire pre-oral region to be "acronal" and thus nonsegmental. Modern workers universally accept that at least the deuterocerebrum is segmental. However, the nature of the region in front of this is much less certain. Some molecular development studies have given limited support to the idea of an "ocular" segment corresponding to the protocerebrum; but these data are not unequivocal. The idea of the protocerebrum actually comprising two segments has also received support from both molecular and embryological data.

The labrum

The labrum is a flap-like structure that lies immediately in front of the mouth in almost all extant euarthropods, the general exception being provided by the probable chelicerate-relatives the pycnogonids. It has proved to be by far the most controversial of all arthropod head structures. It is innervated in crustaceans and insects from the tritocerebrum, i.e. the back of the brain. However, in development it often appears at the anterior of the head, and migrates backwards towards its adult position. Furthermore, it often appears as a bilobed structure, with a set of muscles, nerves and gene expression in many ways similar to that of an appendage. This evidence has been used to suggest that the labrum is in fact a highly reduced appendage. Its innervation from the rear of the brain has suggested to some workers that, if an appendage, it is the appendage of the tritocerebral segment; a point disputed by others who argue that the presence of a well-developed appendage in at least crustaceans in this segment (i.e., the second antenna, corresponding to the intercalary segment of insects) rules this out. If the labrum is an appendage then, it seems possible that its origin is indicated by its developmentally anterior position, i.e., that it is the appendage of a segment anterior to the first antenna. The most obvious choice for this is the segment whose ganglion is the protocerebrum, which in extant euarthropods bears no appendage (apart from the eyes). If the labrum is really an anterior appendage that has migrated to the posterior, then it may be homologous to the "antennae" of onychophorans which, as discussed below, seem to be innervated from a very anterior part of the brain, i.e. in front of the eyes. It has even been suggested (e.g., by Roonwal) that the labrum belongs to an even more obscure segment that lies in front of the ocular one. Nevertheless, many workers continue to be highly skeptical about the appendiculate nature of the labrum, preferring to see it as it appears, i.e., as an outgrowth of the body wall just in front of the mouth.

Mandibulate/chelicerate head homologies

Given the disagreements about the structure of the insect head, on which most effort has been spent, it is no surprise that the potential homologies between it and other arthropods, notably the chelicerates, are also very controversial. From after the second world war to the 1980s a commonly accepted model of arthropod evolution was that the extant euarthropods were polyphyletic
Polyphyly
A polyphyletic group is one whose members' last common ancestor is not a member of the group.For example, the group consisting of warm-blooded animals is polyphyletic, because it contains both mammals and birds, but the most recent common ancestor of mammals and birds was cold-blooded...

, i.e. the main lineages had evolved independently from soft-bodied, annelid-like ancestors, following the work of Tiegs and especially Sidnie Manton
Sidnie Manton
Sidnie Milana Manton, FRS was a British entomologist.-Early life:Sidnie Milana Manton was born in Kensington, London the daughter of a dentist. Her sister was Irene Manton , a botanist, She was educated in Kensington and at St...

. In this view, most of the head structures would also be convergent, and thus there was no point looking for specific homologies between major groups. However, the monophyletic theory of arthropod origins has since decisively gained the upper hand, which raises the problem of head homology once more.

The classical view was that the chelicerae were homologous to the second antennae of crustaceans (i.e., they are innervated from the tritocerebrum), a view based partly on the fact that the chelicerae were innervated from the same ganglion that innervates the labrum, which is the tritocerebrum in crustaceans and insects. Given that there are apparently no appendages in front of the chelicerae, the implication was that the deuterocerebrum had been lost in chelicerates (the protocerebrum innervates the eyes in both groups in this view). Whilst this view still has its defenders (notably Collete and Jacques Bitsch), the alternative view that the chelicerae are innervated from the deuterocerebrum has gained ground, based on molecular development in mites
MITES
MITES, or Minority Introduction to Engineering and Science, is a highly selective six-week summer program for rising high school seniors held at the Massachusetts Institute of Technology. Its purpose is to expose students from minority, or otherwise disadvantaged backgrounds, to the fields of...

 and spiders, and neuroanatomy in Limulus. If this is the case, then chelicerates simply have no tritocerebrum, i.e. there is no third supraoesophageal ganglion of the brain; the segment corresponding to it would be the suboesophageal pedipalp one. Such a theory does not, however, immediately account for the same ganglionic innervation of the chelicerae and labrum, although one solution is simply to claim that the labrum itself is not homologous between mandibulates and chelicerates (the view, for example, of Dieter Waloszek and colleagues).

The heads of onychophorans and tardigrades

The brain of onychophorans has been recently re-investigated and shown to possess two unusual features. First, although the mouth is ventral, as is the case in euarthropods, it is innervated from three different places; the sides, the posterior, and by a nerve that originates dorsally, and passes anteriorly down to curve back to the front of the mouth. This set of innervation makes sense if the mouth of onychophorans was originally terminal and has been bent downwards. Second, the antennae of the onychophorans appear to be innervated from in front of the eyes; which in euarthropod terms implies a protocerebral (or potentially even more anterior) innervation. This is supported by gene expression data, which show that the jaws too are derived from a protocerebral or dueterocerebral segment. As all euarthropod antennae are deuterocerebral or tritocerebral, this implies that the onychophoran antennae are not homologous to any euarthropod ones.

The tritocerebrum in arthropods is homologous to the third head segment in onychophora, which bears the slime glands (a pair of highly modified appendages).

Fossil evidence

The Cambrian fossil record, above all the various lagerstätten such as the Burgess Shale
Burgess Shale
The Burgess Shale Formation, located in the Canadian Rockies of British Columbia, is one of the world's most celebrated fossil fields, and the best of its kind. It is famous for the exceptional preservation of the soft parts of its fossils...

, Sirius Passet
Sirius Passet
Sirius Passet is a Cambrian Lagerstätte in Greenland. The Sirius Passet Lagerstätte was named after the Sirius sledge patrol that operates in North Greenland. It comprises six localities located on the eastern shore of J.P. Koch Fjord in the far north of Greenland. It was discovered in 1984 by A....

, Chengjiang and Orsten
Orsten
The Upper Cambrian Orsten fauna includes fossilized organisms preserved in Orsten lagerstätten, notably at Kinnekulle and on the island of Öland, all in Sweden....

 faunas, has yielded a very rich record of well-preserved arthropods, including the well-known trilobites.

Many Cambrian arthropods, including the trilobites themselves, possess a single pair of slender antennae, which have been equated with either the first or second antennae of the crustaceans; and either the chelicerae of the missing appendages of the supposedly reduced deuterocerebrum in chelicerates. However, another group of arthropods, the so-called "great appendage" arthropods, including Yohoia
Yohoia
Yohoia is a tiny, extinct animal from the Cambrian period that has been found as fossils in the Burgess Shale formation of British Columbia, Canada. It has been placed among the arachnomorphs, a group of arthropods that includes the chelicerates and trilobites. Their sizes range from 7 to 23 mm...

, Leanchoilia
Leanchoilia
Leanchoilia is a four-eyed arachnomorph arthropod known from the Cambrian Burgess shale. It was about 5cm long and had long, whip-like feelers mounted on frontal arm-like appendages. Its guts are sometimes preserved in three dimensions....

and Alalcomenaeus
Alalcomenaeus
Alalcomenaeus is one of the most widespread and longest surviving arthropod genera of the Early and Middle Cambrian. Known from over 300 specimens in the Burgess shale, and the Chengjiang, it bears great similarity to the opabiniids.-Morphology:...

, do not possess simple antennae, but rather have a robust, branched structure, which was called the "great appendage" by Harry B. Whittington
Harry B. Whittington
Harry Blackmore Whittington FRS was a British paleontologist based at the Department of Earth Sciences, Cambridge, and was affiliated to Sidney Sussex College. He attended Handsworth Grammar School in Birmingham, followed by a degree and Ph.D in geology from the University of Birmingham...

 in his restudy of these taxa. Yet another group of arthropods may possess two differentiated head appendages, of which the most important and controversial is the Chengjiang form Fuxianhuia
Fuxianhuia
Fuxianhuia protensa is a Lower Cambrian fossil arthropod known from the Chengjiang Fauna in China. Its purportedly primitive features have led to its playing a pivotal role in discussions about the euarthropod stem group...

. Fuxianhuia was claimed to possess a pair of short antennae anterior, followed by a robust pair of "sub-chelate" appendages. However, this assessment has been both disputed by Waloszek and colleagues, who consider that the sub-chelate appendages are in fact gut diverticulae
Diverticulum
A diverticulum is medical or biological term for an outpouching of a hollow structure in the body. Depending upon which layers of the structure are involved, they are described as being either true or false....

; and supported by Graham Budd
Graham Budd
Graham Edward Budd is a British palaeontologist, Professor of paleobiology at Uppsala University.Budd’s research primarily has focused on the anatomy and evolutionary significance of Paleozoic arthropods and in the integration of palaeontology into evolutionary developmental biology...

. Thus, its nature remains controverted at present. Other taxa have also been claimed to have a somewhat similar anterior appendage arrangement (e.g. Fortiforceps) but, with the exception of the well-preserved Branchiocaris from the Burgess Shale, most of them are highly equivocal.

In almost all Cambrian arthropods, the post-oral limbs show very little differentiation compared to the trunk limbs; the heads posterior to the mouth shows a considerable degree of variability, however, in the number of segments incorporated into the head.

Trilobites, in particular, possess a ventral sclerotised plate in the head called the hypostome
Hypostome
A hypostome , is a calcified harpoon-like structure near the mouth area of certain parasitic arthropods including ticks and mites , that allows them to anchor themselves firmly in place on a host mammal while sucking blood...

. Whether this is homologous to the labrum or not is debated; although Waloszek and others have argued that as the phosphatocopines (upper stem-group crustaceans) seem to possess both, it cannot be.

Theories of Cambrian arthropod head segmentation

There are at least four main theories to account for anterior head appendages in Cambrian arthropods:

Scholtz and Edgecombe

Gerhard Scholtz and Greg Edgecombe accept that the antennae of onychophorans are protocerebral, and call them "primary" antennae to distinguish them from the "secondary" antennae of groups such as the insects and crustaceans. They also accept that taxa such as Fuxianhuia
Fuxianhuia
Fuxianhuia protensa is a Lower Cambrian fossil arthropod known from the Chengjiang Fauna in China. Its purportedly primitive features have led to its playing a pivotal role in discussions about the euarthropod stem group...

possess both antennae and "great appendages". Because in Fuxianhuia the antennae lie anterior to the great appendages, they suggest that these antennae are the inherited primitive "primary" antennae; and that the great appendages are thus equivalent to the first antennae of crustaceans. Because the secondary antennae are not present in stem group arthropods such as Fuxianhuia
Fuxianhuia
Fuxianhuia protensa is a Lower Cambrian fossil arthropod known from the Chengjiang Fauna in China. Its purportedly primitive features have led to its playing a pivotal role in discussions about the euarthropod stem group...

, nor in the extant chelicerates, they propose that arthropods, such as the trilobites, that possess secondary antennae, belong in a monophyletic group that also includes the mandibulates, called the Antennata. The trilobites are thus, in their view, not stem-group chelicerates, a commonly held view, but rather, stem-group mandibulates. The status of the labrum is not resolved by this theory, but they argue that it the evidence for it being appendiculate is not compelling; thus it does not have to correspond to a well-developed appendage of any Cambrian arthropod.

Budd

Graham Budd's theory agrees with that of Scholtz and Edgecombe in accepting the protocerebral nature of the onychophoran antennae, and the two preoral appendages of Fuxianhuia
Fuxianhuia
Fuxianhuia protensa is a Lower Cambrian fossil arthropod known from the Chengjiang Fauna in China. Its purportedly primitive features have led to its playing a pivotal role in discussions about the euarthropod stem group...

. However, he traces the origin of the "great appendages" in the differentiated frontal appendages of Cambrian lobopods such as Aysheaia
Aysheaia
Aysheaia was a genus of soft-bodied, caterpillar-shaped organisms average body length of 1–6 cm. The genus name commemorates a mountain peak named "Ayesha" due north of the Wapta Glacier. This peak was originally named Aysha in the 1904 maps of the region, and was re-named Ayesha after the heroine...

and Kerygmachela, neither of which possess convincing antennae. Thus, in Budd's view, the order of the two anterior appendages of taxa such as Fuxianhuia are reversed: the antennae are the first antennae (deutocerebral) of the mandibulates; and the great appendages correspond to the primary antennae of the onychophorans and Cambrian lobopods. Following previous work by Dewel and colleagues, Budd accounts for their reversal by arguing that the mouth in basal lobopods was terminal, and that as it rotated backwards and downwards, it brought the anterior appendage backwards with it. Given this transformation, it is likely, under this theory, that the remnant of the great appendage/primary antenna is the labrum of extant arthropods. Because in this view Fuxianhuia possesses both a hypostome and a great appendage, the hypostome cannot be straightforwardly homologous with the labrum.
Pycnogonids and the great appendage theory

Maxmen and others recently published a morphologically based paper that claimed the enigmatic chelifores of extant pycnogonids are innervated from the protocerebrum, and not from the trito- or deutocerebrum as previously claimed. This would suggest that pycnogonids had uniquely retained a "great appendage" homologue as an appendage, unlike all other euarthropods in which it had been transformed into the labrum (pycnogonids lack a labrum). However, expression data of Hox genes that were published shortly afterwards suggested that the chelifores were deuterocerebral and thus most likely to be homologous to the chelicerae. The pycnogonids are thus neutral with regard to the great appendage theory.

Waloszek

Dieter Waloszek and colleagues have offered a rather different account of Cambrian arthropod head structure. They do not necessarily accept the primary antenna theory of the onychophoran antennae; and they reject the idea that Fuxianhuia
Fuxianhuia
Fuxianhuia protensa is a Lower Cambrian fossil arthropod known from the Chengjiang Fauna in China. Its purportedly primitive features have led to its playing a pivotal role in discussions about the euarthropod stem group...

or any of its close relatives possessed a great appendage. Rather, they place the "great appendage" arthropods in the stem-group of the chelicerates, arguing that the great appendage is homologous to the chelicerae of chelicerates, and the first antennae of crustaceans.

Cotton and Braddy

Trevor Cotton and Simon Braddy, in a comprehensive cladistic analysis of Cambrian arthropods, also proposed that the great appendage arthropods were stem-group chelicerates;and, accepting that Fuxianhuia and relatives possessed two preoral appendages, defended the classical view that the great appendage and the chelicerae were tritocerebral in origin; i.e. that the antennae of Fuxianhuia
Fuxianhuia
Fuxianhuia protensa is a Lower Cambrian fossil arthropod known from the Chengjiang Fauna in China. Its purportedly primitive features have led to its playing a pivotal role in discussions about the euarthropod stem group...

were deuterocerebral.

Assessment

The number and nature of the post-oral segments in the insect head have rarely been questioned. A much more difficult area, however, has been the nature of the preoral region. The obvious contradiction between a theory that no-preoral structures are segmental, and evidence, such as for the first antennae of crustaceans, that some such structures clearly are, led workers as long ago as Lankester
Ray Lankester
Sir E. Ray Lankester KCB, FRS was a British zoologist, born in London.An invertebrate zoologist and evolutionary biologist, he held chairs at University College London and Oxford University. He was the third Director of the Natural History Museum, and was awarded the Copley Medal of the Royal...

 to posit that there has been forward migration of segments in front of the mouth. Indeed, such a process can be seen in ontogeny
Ontogeny
Ontogeny is the origin and the development of an organism – for example: from the fertilized egg to mature form. It covers in essence, the study of an organism's lifespan...

of the tritocerebrum, which can be seen to migrate forward as the brain develops; furthermore, although in most insects and crustaceans its ganglia are part of the brain, its commissures still loop behind it, suggesting derivation from a more posterior position.

Nevertheless, even allowing for this possibility, the complexity of the anterior part of the brain, which even if the acron concept is incorrect may still have been inherited from very basal animals; untangling the new characters evolved by the earliest arthropods from those inherited from their ancestors therefore still stands centrally in the arthropod head problem.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK