Virtual prototyping is a technique in the process of product development. It involves using
computer-aided designComputer-aided design , also known as computer-aided design and drafting , is the use of computer technology for the process of design and design-documentation. Computer Aided Drafting describes the process of drafting with a computer...
(CAD) and
computer-aided engineeringComputer-aided engineering is the broad usage of computer software to aid in engineering tasks. It includes computer-aided design , computer-aided analysis , computer-integrated manufacturing , computer-aided manufacturing , material requirements planning , and computer-aided planning .- Overview...
(CAE) software to validate a design before committing to making a physical
prototypeA prototype is an early sample or model built to test a concept or process or to act as a thing to be replicated or learned from.The word prototype derives from the Greek πρωτότυπον , "primitive form", neutral of πρωτότυπος , "original, primitive", from πρῶτος , "first" and τύπος ,...
. This is done by creating (usually 3D) computer generated geometrical shapes (parts) and either combining them into an "assembly" and testing different mechanical motions, fit and function or just aesthetic appeal. The assembly or individual parts could be opened in CAE software to simulate the behavior of the product in the real world.
Background
The product design and development process used to rely primarily on engineers’ experience and judgment in producing an initial concept design. A physical prototype was then constructed and tested in order to evaluate its performance. Without any way to evaluate its performance in advance, the initial prototype was highly unlikely to meet expectations. Engineers usually had to re-design the initial concept multiple times to address weaknesses that were revealed in physical testing.
Move towards virtual prototypes
Today, manufacturers are under pressure to reduce time to market and optimize products to higher levels of performance and reliability. A much higher number of products are being developed in the form of virtual prototypes in which engineering simulation software are used to predict performance prior to constructing physical prototyping. Engineers can quickly explore the performance of thousands of design alternatives without investing the time and money required to build physical prototypes. The ability to explore a wide range of design alternatives leads to improvements in performance and design quality. Yet the time required to bring the product to market is usually reduced substantially because virtual prototypes can be produced much faster than physical prototypes.
End-to-end prototyping
End-to-end prototyping accounts fully for how a product or a component is manufactured and assembled and links the consequences of those processes to performance. Early availability of such physically realistic virtual prototypes allows testing and performance confirmation to take place as design decisions are made; enabling the acceleration of the design activity and providing more insight on the relationship between manufacturing and performance than can be achieved by building and testing physical prototypes. The benefits include reduced costs in both design and manufacturing as physical prototyping and testing is dramatically reduced/eliminated and lean but robust manufacturing processes are selected.
Effects
The research firm Aberdeen Group reports that best-in-class manufacturers that make extensive use of simulation early in the design process hit revenue, cost, and launch date and quality targets for 86% or more of their products. Best-in-class manufacturers of the most complex products get to market 158 days earlier with $1.9 million lower costs than all other manufacturers. Best-in-class manufacturers of the simplest products get to market 21 days earlier with $21,000 fewer product development costs.
The source of this article is
wikipedia, the free encyclopedia. The text of this article is licensed under the
GFDL.