Sub-band coding
Encyclopedia
Sub-band coding is any form of transform coding
Transform coding
Transform coding is a type of data compression for "natural" data like audio signals or photographic images. The transformation is typically lossy, resulting in a lower quality copy of the original input....

 that breaks a signal into a number of different frequency bands and encodes each one independently. This decomposition is often the first step in data compression for audio and video signals.

Basic Principles

The utility of SBC is perhaps best illustrated with a specific example. When used for audio compression, SBC exploits what might be considered a deficiency of the human auditory system. Human ears are normally sensitive to a wide range of frequencies, but when a sufficiently loud signal is present at one frequency, the ear will not hear weaker signals at nearby frequencies. We say that the louder signal masks the softer ones. The louder signal is called the masker, and the point at which masking occurs is known, appropriately enough, as the masking threshold.

The basic idea of SBC is to enable a data reduction by discarding information about frequencies which are masked. The result differs from the original signal, but if the discarded information is chosen carefully, the difference will not be noticeable, or more importantly, objectionable.

Encoding audio signals

The simplest way to digitally encode audio signals is pulse-code modulation
Pulse-code modulation
Pulse-code modulation is a method used to digitally represent sampled analog signals. It is the standard form for digital audio in computers and various Blu-ray, Compact Disc and DVD formats, as well as other uses such as digital telephone systems...

 (PCM), which is used on audio CDs, DAT
Digital Audio Tape
Digital Audio Tape is a signal recording and playback medium developed by Sony and introduced in 1987. In appearance it is similar to a compact audio cassette, using 4 mm magnetic tape enclosed in a protective shell, but is roughly half the size at 73 mm × 54 mm × 10.5 mm. As...

 recordings, and so on. Digitization transforms continuous signals into discrete ones by sampling a signal's amplitude at uniform intervals and rounding to the nearest value representable with the available number of bits. This process is fundamentally inexact, and involves two errors: discretization error
Discretization error
In numerical analysis, computational physics, and simulation, discretization error is error resulting from the fact that a function of a continuous variable is represented in the computer by a finite number of evaluations, for example, on a lattice...

,
from sampling at intervals, and quantization error
Quantization error
In analog-to-digital conversion, the difference between the actual analog value and quantized digital value is called quantization error or quantization distortion. This error is either due to rounding or truncation...

,
from rounding.

The more bits used represent each sample, the finer the granularity in the digital representation, and thus the smaller the error. Such quantization errors may be thought of as a type of noise, because they are effectively the difference between the original source and its binary representation. With PCM, the only way to mitigate the audible effects of these errors is to use enough bits to ensure that the noise is low enough to be masked either by the signal itself or by other sources of noise. A high quality signal is possible, but at the cost of a high bitrate
Bitrate
In telecommunications and computing, bit rate is the number of bits that are conveyed or processed per unit of time....

 (e.g., over 700 kbit/s for one channel of CD audio). In effect, many bits are wasted in encoding masked portions of the signal because PCM makes no assumptions about how the human ear hears.

More clever ways of digitizing an audio signal can reduce that waste by exploiting known characteristics of the auditory system. A classic method is nonlinear PCM, such as mu-law encoding (named after a perceptual curve in auditory perception research). Small signals are digitized with finer granularity than are large ones; the effect is to add noise that is proportional to the signal strength. Sun's Au file format
Au file format
The Au file format is a simple audio file format introduced by Sun Microsystems. The format was common on NeXT systems and on early Web pages. Originally it was headerless, being simply 8-bit µ-law-encoded data at an 8000 Hz sample rate. Hardware from other vendors often used sample rates as...

 for sound is a popular example of mu-law encoding. Using 8-bit mu-law encoding would cut the per-channel bitrate of CD audio down to about 350 kbit/s, or about half the standard rate. Because this simple method only minimally exploits masking effects, it produces results that are often audibly poorer than the original.

Sub-band coding is used for example in G.722
G.722
G.722 is a ITU-T standard 7 kHz wideband speech codec operating at 48, 56 and 64 kbit/s. It was approved by ITU-T in November 1988. Technology of the codec is based on sub-band ADPCM ....

 codec. It uses sub-band adaptive differential pulse code modulation (SB-ADPCM) within a bit rate of 64 kbit/s. In the SB-ADPCM technique used, the frequency band is split into two sub-bands (higher and lower) and the signals in each sub-band are encoded using ADPCM.

A basic SBC scheme

To enable higher quality compression, one may use subband coding. First, a digital filter bank divides the input signal spectrum into some number (e.g., 32) of subbands. The psychoacoustic model looks at the energy in each of these subbands, as well as in the original signal, and computes masking thresholds using psychoacoustic information. Each of the subband samples is quantized and encoded so as to keep the quantization noise below the dynamically computed masking threshold. The final step is to format all these quantized samples into groups of data called frames, to facilitate eventual playback by a decoder.

Decoding is much easier than encoding, since no psychoacoustic model is involved. The frames are unpacked, subband samples are decoded, and a frequency-time mapping reconstructs an output audio signal.

Over the last five to ten years, SBC systems have been developed by many of the key companies and laboratories in the audio industry. Beginning in the late 1980s, a standardization body called the Motion Picture Experts Group (MPEG) developed generic standards for coding of both audio and video. Subband coding resides at the heart of the popular MP3 format (more properly known as MPEG-1 Audio Layer III), for example.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK