Spike timing dependent plasticity
Encyclopedia
Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potential
Action potential
In physiology, an action potential is a short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, called excitable cells, which include neurons, muscle cells, and...

s (or spikes). The STDP process is a tentative candidate for a hypothesis that partially explains the development of an individual's brain.

Process

Under the STDP process, if an input spike to a neuron tends, on average, to occur immediately before that neuron's output spike, then that particular input is made somewhat stronger. If an input spike tends, on average, to occur immediately after an output spike, then that particular input is made somewhat weaker hence: "spike-timing-dependent plasticity". Thus, inputs that might be the cause of the post-synaptic neuron's excitation are made even more likely to contribute in the future, whereas inputs that are not the cause of the post-synaptic spike are made less likely to contribute in the future. The process continues until a subset of the initial set of connections remain, while the influence of all others is reduced to 0. Since a neuron produces an output spike when many of its inputs occur within a brief period the subset of inputs that remain are those that tended to be correlated in time. In addition, since the inputs that occur before the output are strengthened, the inputs that provide the earliest indication of correlation will eventually become the final input to the neuron.

History

Early experiments on associative plasticity were carried out by W. B. Levy and O. Steward in 1983 and examined the effect of relative timing of pre and postsynaptic action potentials at millisecond level on plasticity. Bruce McNaughton contributed much to this area, too. Y.Dan and M. Poo in 1992 on neuromuscular, D. Debanne, B. Gähwiler and S. Thompson in 1994 on the hippocampus, showed that asynchronous pairing of postsynaptic and synaptic activity induced long-term synaptic depression. However, STDP was more definitively demonstrated by Henry Markram in his postdoc period till 1993 in Bert Sakmann's lab (SFN and Phys Soc abstracts in 1994–1995) which was only published in 1997. C. Bell and co-workers also found a form of STDP in the cerebellum. Henry Markram used dual patch clamping techniques to repetitively activate pre-synaptic neurons 10 milliseconds before and after the post-synaptic target neurons, and found the strength of the synapse increased. When the activation order was reversed so that the pre-synaptic neuron was activated 10 milliseconds after its post-synaptic target neuron, the strength of the pre-to-post synaptic connection decreased. Further work, by Guoqiang Bi, Li Zhang, and Huizhong Tao in Mu-Ming Poo's lab in 1998, continued the mapping of the entire time course relating pre- and post-synaptic activity and synaptic change, to show that in their preparation synapses that are activated within 5-40 ms before a postsynaptic spike are strengthened, and those that are activated within a similar time window after the spike are weakened. This phenomenon has been observed in various other preparations, with some variation in the time-window relevant for plasticity. Several reasons for timing-dependent plasticity have been suggested. For example, STDP might provide a substrate for Hebbian learning during development. Works from Y. Dan's lab advanced to study STDP in in vivo systems.

Mechanisms

Postsynaptic NMDA receptor
NMDA receptor
The NMDA receptor , a glutamate receptor, is the predominant molecular device for controlling synaptic plasticity and memory function....

s are highly sensitive to the membrane potential (see coincidence detection in neurobiology
Coincidence detection in neurobiology
Coincidence detection in the context of neurobiology is a process by which a neuron or a neural circuit can encode information by detecting the occurrence of timely simultaneous yet spatially separate input signals...

). Due to their high permeability for calcium, they generate a local chemical signal that is largest when the back-propagating action potential
Neural backpropagation
Neural backpropagation is the phenomenon in which the action potential of a neuron creates a voltage spike both at the end of the axon and back through to the dendritic arbor or dendrites, from which much of the original input current originated...

 in the dendrite arrives shortly after the synapse was active (pre-post spiking). Large postsynaptic calcium transients are known to trigger synaptic potentiation (LTP
LTP
- Science and technology :* Lunar Transient Phenomena, a short-lived change in appearance of Earth's moon* Long-tailed pair, a differential pair amplifier* Lightweight Telephony Protocol, a signaling protocol...

). The mechanism for spike-timing-dependent depression is less well understood, but often involves either postsynaptic voltage-dependent calcium entry/mGluR activation, or retrograde endocannabinoids and presynaptic NMDARs.

From Hebbian Rule to STDP

According to the Hebbian Rule
Hebbian theory
Hebbian theory describes a basic mechanism for synaptic plasticity wherein an increase in synaptic efficacy arises from the presynaptic cell's repeated and persistent stimulation of the postsynaptic cell...

 synapses increase their efficiency if the synapse persistently causes the postsynaptic target neuron to generate action potentials. An often used but not entirely accurate simplification is those who fire together, wire together. With recent advancements in technology we can more precisely measure the spike timing of neurons. As it turns out, the synaptic connection between two neurons is more likely to strengthen if the presynaptic
Chemical synapse
Chemical synapses are specialized junctions through which neurons signal to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie...

 neuron fires off shortly before the postsynaptic
Chemical synapse
Chemical synapses are specialized junctions through which neurons signal to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie...

neuron. Revisiting, the Hebbian rule, we can tweak it to accommodate these temporal aspects. Synapses increase their efficacy if the presynaptic spike arrives before the postsynaptic neuron is activated.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK