Single-valued function
Encyclopedia
A single-valued function is an emphatic term for a mathematical function in the usual sense. That is, each element of the function's domain maps to a single, well-defined element of its range. This contrasts with a general binary relation
, which can be viewed as being a multi-valued function. A single-valued function is One-to-One if and only if
it is also single-rooted.
For example : f(x) = x+3 (each element in domain has not more than one image in range set).
Binary relation
In mathematics, a binary relation on a set A is a collection of ordered pairs of elements of A. In other words, it is a subset of the Cartesian product A2 = . More generally, a binary relation between two sets A and B is a subset of...
, which can be viewed as being a multi-valued function. A single-valued function is One-to-One if and only if
If and only if
In logic and related fields such as mathematics and philosophy, if and only if is a biconditional logical connective between statements....
it is also single-rooted.
For example : f(x) = x+3 (each element in domain has not more than one image in range set).