Programming by demonstration
Encyclopedia
In computer science
, programming by demonstration (PbD) is an End-user development technique for teaching a computer or a robot new behaviors by demonstrating the task to
transfer directly instead of programming it through machine commands.
The terms programming by example
(PbE) and programming by demonstration (PbD) appeared in software development research as early as the mid 1980s to define a way to define a sequence of operations without having to learn a programming language. The usual distinction in literature between these terms is that in PbE the user gives a prototypical product of the computer execution, such as a row in the desired results of a query
; while in PbD the user performs a sequence of actions that the computer must repeat, generalizing it to be used in different data sets.
These two terms were first undifferentiated, but PbE then tended to be mostly adopted by software development researchers while PbD tended to be adopted by robotics researchers. Today, PbE refers to an entirely different concept, supported by new programming languages that are similar to simulators.
The first PbD strategies proposed in robotics were based on teach-in, guiding or play-back methods that consisted
basically in moving the robot (through a dedicated interface or manually) through a set of relevant configurations that the robot
should adopt sequentially (position, orientation, state of the gripper). The method was then progressively ameliorated by
focusing principally on the teleoperation control and by using different interfaces such as vision.
However, these PbD methods still used direct repetition, which was useful in industry only when conceiving an assembly line using exactly the same product components. To apply this concept to products with different variants or to apply the programs to new robots, the generalization issue became a crucial point. To address this issue, the first attempts at generalizing the skill
were mainly based on the help of the user through queries about the user's intentions. Then, different levels of abstractions were
proposed to resolve the generalization issue, basically dichotomized in learning methods at a symbolic level or at a trajectory level.
The development of humanoid robots naturally brought a growing interest in robot programming by demonstration. As a humanoid robot is supposed by its nature to adapt to new environments, not only the human appearance is important but the algorithms used for its control require flexibility and versatility. Due to the continuously changing environments and to the huge varieties of tasks that a robot is expected to perform, the robot requires the ability to continuously learn new skills and adapt the existing skills to new contexts.
Research in PbD also progressively departed from its original purely engineering perspective to adopt an interdisciplinary approach, taking insights from neuroscience and social sciences to emulate the process of imitation in humans and animals. With the increasing consideration of this body of work in robotics, the notion of Robot programming by demonstration (also known as RPD or RbD) was also progressively replaced by the more biological label of Learning by imitation.
Computer science
Computer science or computing science is the study of the theoretical foundations of information and computation and of practical techniques for their implementation and application in computer systems...
, programming by demonstration (PbD) is an End-user development technique for teaching a computer or a robot new behaviors by demonstrating the task to
transfer directly instead of programming it through machine commands.
The terms programming by example
Programming by example
In computer science, programming by example , also known as programming by demonstration or more generally as demonstrational programming, is an End-user development technique for teaching a computer new behavior by demonstrating actions on concrete examples...
(PbE) and programming by demonstration (PbD) appeared in software development research as early as the mid 1980s to define a way to define a sequence of operations without having to learn a programming language. The usual distinction in literature between these terms is that in PbE the user gives a prototypical product of the computer execution, such as a row in the desired results of a query
Query by Example
Query by Example is a database query language for relational databases. It was devised by Moshé M. Zloof at IBM Research during the mid 1970s, in parallel to the development of SQL. It is the first graphical query language, using visual tables where the user would enter commands, example elements...
; while in PbD the user performs a sequence of actions that the computer must repeat, generalizing it to be used in different data sets.
These two terms were first undifferentiated, but PbE then tended to be mostly adopted by software development researchers while PbD tended to be adopted by robotics researchers. Today, PbE refers to an entirely different concept, supported by new programming languages that are similar to simulators.
Robot programming by demonstration
The PbD paradigm is first attractive to the robotics industry due to the costs involved in the development and maintenance of robot programs. In this field, the operator often has implicit knowledge on the task to achieve (he/she knows how to do it), but does not have usually the programming skills (or the time) required to reconfigure the robot. Demonstrating how to achieve the task through examples thus allows to learn the skill without explicitly programming each detail.The first PbD strategies proposed in robotics were based on teach-in, guiding or play-back methods that consisted
basically in moving the robot (through a dedicated interface or manually) through a set of relevant configurations that the robot
should adopt sequentially (position, orientation, state of the gripper). The method was then progressively ameliorated by
focusing principally on the teleoperation control and by using different interfaces such as vision.
However, these PbD methods still used direct repetition, which was useful in industry only when conceiving an assembly line using exactly the same product components. To apply this concept to products with different variants or to apply the programs to new robots, the generalization issue became a crucial point. To address this issue, the first attempts at generalizing the skill
were mainly based on the help of the user through queries about the user's intentions. Then, different levels of abstractions were
proposed to resolve the generalization issue, basically dichotomized in learning methods at a symbolic level or at a trajectory level.
The development of humanoid robots naturally brought a growing interest in robot programming by demonstration. As a humanoid robot is supposed by its nature to adapt to new environments, not only the human appearance is important but the algorithms used for its control require flexibility and versatility. Due to the continuously changing environments and to the huge varieties of tasks that a robot is expected to perform, the robot requires the ability to continuously learn new skills and adapt the existing skills to new contexts.
Research in PbD also progressively departed from its original purely engineering perspective to adopt an interdisciplinary approach, taking insights from neuroscience and social sciences to emulate the process of imitation in humans and animals. With the increasing consideration of this body of work in robotics, the notion of Robot programming by demonstration (also known as RPD or RbD) was also progressively replaced by the more biological label of Learning by imitation.
Reviews Papers
- Robots that imitate humans, Cynthia Breazeal and Brian Scassellati, Trends in Cognitive Sciences, 6:1, 2002, pp. 481–87..