Postselection
Encyclopedia
In probability theory
, to postselect is to condition
a probability space
upon the occurrence of a given event. In symbols, once we postselect for an event E, the probability of some other event F changes from Pr[F] to the conditional probability
Pr[F|E].
For a discrete probability space, Pr[F|E] = Pr[F and E]/Pr[E], and thus we require that Pr[E] be strictly positive in order for the postselection to be well-defined.
Probability theory
Probability theory is the branch of mathematics concerned with analysis of random phenomena. The central objects of probability theory are random variables, stochastic processes, and events: mathematical abstractions of non-deterministic events or measured quantities that may either be single...
, to postselect is to condition
Conditional probability
In probability theory, the "conditional probability of A given B" is the probability of A if B is known to occur. It is commonly notated P, and sometimes P_B. P can be visualised as the probability of event A when the sample space is restricted to event B...
a probability space
Probability space
In probability theory, a probability space or a probability triple is a mathematical construct that models a real-world process consisting of states that occur randomly. A probability space is constructed with a specific kind of situation or experiment in mind...
upon the occurrence of a given event. In symbols, once we postselect for an event E, the probability of some other event F changes from Pr[F] to the conditional probability
Conditional probability
In probability theory, the "conditional probability of A given B" is the probability of A if B is known to occur. It is commonly notated P, and sometimes P_B. P can be visualised as the probability of event A when the sample space is restricted to event B...
Pr[F|E].
For a discrete probability space, Pr[F|E] = Pr[F and E]/Pr[E], and thus we require that Pr[E] be strictly positive in order for the postselection to be well-defined.