Pneumatic actuator
Encyclopedia
A pneumatic actuator converts energy (typically in the form of compressed air
Compressed air
Compressed air is air which is kept under a certain pressure, usually greater than that of the atmosphere. In Europe, 10 percent of all electricity used by industry is used to produce compressed air, amounting to 80 terawatt hours consumption per year....

) into motion. The motion can be rotary or linear, depending on the type of actuator.
Some types of pneumatic actuators include:
  • Tie rod cylinders
  • Rotary actuators
  • Grippers
  • Rodless actuators with magnetic linkage or rotary cylinders
  • Rodless actuators with mechanical linkage
  • Pneumatic artificial muscles
    Pneumatic artificial muscles
    Pneumatic artificial muscles are contractile or extensional devices operated by pressurized air filling a pneumatic bladder. In a vague approximation of human muscles, PAMs are usually grouped in pairs: one agonist and one antagonist....

  • Speciality actuators that combine rotary and linear motion—frequently used for clamping operations
  • Vacuum generators


A Pneumatic actuator mainly consists of a piston, a cylinder, and valves or ports. The piston is covered by a diaphragm, or seal, which keeps the air in the upper portion of the cylinder, allowing air pressure to force the diaphragm downward, moving the piston underneath, which in turn moves the valve stem, which is linked to the internal parts of the actuator
Actuator
An actuator is a type of motor for moving or controlling a mechanism or system. It is operated by a source of energy, usually in the form of an electric current, hydraulic fluid pressure or pneumatic pressure, and converts that energy into some kind of motion. An actuator is the mechanism by which...

. Pneumatic actuators may only have one spot for a signal input, top or bottom, depending on action required. Valves require little pressure to operate and usually double or triple the input force. The larger the size of the piston, the larger the output pressure can be. Having a larger piston can also be good if air supply is low, allowing the same forces with less input. These pressures are large enough to crush object in the pipe. On 100 kPa input, you could lift a small car (upwards 1,000 lbs) easily, and this is only a basic, small pneumatic valve. However, the resulting forces required of the stem would be too great and cause the valve stem to fail.

This pressure is transferred to the valve stem, which is hooked up to either the valve plug (see plug valve
Plug valve
Plug valves are valves with cylindrical or conically-tapered "plugs" which can be rotated inside the valve body to control flow through the valve. The plugs in plug valves have one or more hollow passageways going sideways through the plug, so that fluid can flow through the plug when the valve is...

), butterfly valve
Butterfly valve
A butterfly valve is a valve which can be used for isolating or regulating flow. The closing mechanism takes the form of a disk. Operation is similar to that of a ball valve, which allows for quick shut off. Butterfly valves are generally favored because they are lower in cost to other valve...

etc. Larger forces are required in high pressure or high flow pipelines to allow the valve to overcome these forces, and allow it to move the valves moving parts to control the material flowing inside.

Valves input pressure is the "control signal." This can come from a variety of measuring devices, and each different pressure is a different set point for a valve. A typical standard signal is 20–100 kPa. For example, a valve could be controlling the pressure in a vessel which has a constant out-flow, and a varied in-flow (varied by the actuator and valve). A pressure transmitter will monitor the pressure in the vessel and transmit a signal from 20–100 kPa. 20 kPa means there is no pressure, 100 kPa means there is full range pressure (can be varied by the transmiters calibration points). As the pressure rises in the vessel, the output of the transmitter rises, this increase in pressure is sent to the valve, which causes the valve to stroke downard, and start closing the valve, decreasing flow into the vessel, reducing the pressure in the vessel as excess pressure is evacuated through the out flow. This is called a direct acting process.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK