Models of scientific inquiry
Encyclopedia
In the philosophy of science
Philosophy of science
The philosophy of science is concerned with the assumptions, foundations, methods and implications of science. It is also concerned with the use and merit of science and sometimes overlaps metaphysics and epistemology by exploring whether scientific results are actually a study of truth...

, models of scientific inquiry have two functions: first, to provide a descriptive account of how scientific inquiry is carried out in practice, and second, to provide an explanatory account of why scientific inquiry succeeds as well as it appears to do in arriving at genuine knowledge of its objects. Such accounts tend to reflect different philosophical positions in epistemology, the branch of philosophy concerned with the nature and scope of knowledge
Knowledge
Knowledge is a familiarity with someone or something unknown, which can include information, facts, descriptions, or skills acquired through experience or education. It can refer to the theoretical or practical understanding of a subject...

.


The search for scientific knowledge extends far back into antiquity. At some point in the past, at least by the time of Aristotle, philosophers recognized that a fundamental distinction should be drawn between two kinds of scientific knowledge — roughly, knowledge that and knowledge why. It is one thing to know that each planet periodically reverses the direction of its motion with respect to the background of fixed stars; it is quite a different matter to know why. Knowledge of the former type is descriptive; knowledge of the latter type is explanatory. It is explanatory knowledge that provides scientific understanding of the world. (Salmon, 1990)

Classical model

The classical model of scientific inquiry derives from Aristotle
Aristotle
Aristotle was a Greek philosopher and polymath, a student of Plato and teacher of Alexander the Great. His writings cover many subjects, including physics, metaphysics, poetry, theater, music, logic, rhetoric, linguistics, politics, government, ethics, biology, and zoology...

, who distinguished the forms of approximate and exact reasoning, set out the threefold scheme of abductive
Abductive reasoning
Abduction is a kind of logical inference described by Charles Sanders Peirce as "guessing". The term refers to the process of arriving at an explanatory hypothesis. Peirce said that to abduce a hypothetical explanation a from an observed surprising circumstance b is to surmise that a may be true...

, deductive
Deductive reasoning
Deductive reasoning, also called deductive logic, is reasoning which constructs or evaluates deductive arguments. Deductive arguments are attempts to show that a conclusion necessarily follows from a set of premises or hypothesis...

, and inductive
Inductive reasoning
Inductive reasoning, also known as induction or inductive logic, is a kind of reasoning that constructs or evaluates propositions that are abstractions of observations. It is commonly construed as a form of reasoning that makes generalizations based on individual instances...

 inference, and also treated the compound forms such as reasoning by analogy
Analogy
Analogy is a cognitive process of transferring information or meaning from a particular subject to another particular subject , and a linguistic expression corresponding to such a process...

.

Logical empiricism

Wesley Salmon (1990) began his historical survey of scientific explanation with what he called the received view, as it was received from Hempel
Carl Gustav Hempel
Carl Gustav "Peter" Hempel was a philosopher of science and a major figure in 20th-century logical empiricism...

 and Oppenheim
Paul Oppenheim
Paul Oppenheim was a German chemist, philosopher, independent scholar and industrialist....

 in the years beginning with their "Studies in the Logic of Explanation" (1948) and culminating in Hempel's "Aspects of Scientific Explanation" (1965). Salmon summed up his analysis of these developments by means of the following Table.
Laws \ Explananda Particular Facts General Regularities
Universal Laws D-N

Deductive-Nomological

D-N

Deductive-Nomological

Statistical Laws I-S

Inductive-Statistical

D-S

Deductive-Statistical



In this classification, a deductive-nomological
Deductive-nomological
The deductive-nomological model is a formalized view of scientific explanation in natural language. It characterizes scientific explanations primarily as deductive arguments with at least one natural law statement among its premises...

 (D-N) explanation of an occurrence is a valid deduction whose conclusion states that the outcome to be explained did in fact occur. The deductive argument is called an explanation, its premisses are called the explanans (L:
Latin
Latin is an Italic language originally spoken in Latium and Ancient Rome. It, along with most European languages, is a descendant of the ancient Proto-Indo-European language. Although it is considered a dead language, a number of scholars and members of the Christian clergy speak it fluently, and...

 explaining) and the conclusion is called the explanandum (L:
Latin
Latin is an Italic language originally spoken in Latium and Ancient Rome. It, along with most European languages, is a descendant of the ancient Proto-Indo-European language. Although it is considered a dead language, a number of scholars and members of the Christian clergy speak it fluently, and...

 to be explained). Depending on a number of additional qualifications, an explanation may be ranked on a scale from potential to true.

Not all explanations in science are of the D-N type, however. An inductive-statistical (I-S) explanation accounts for an occurrence by subsuming it under statistical laws, rather than categorical or universal laws, and the mode of subsumption is itself inductive instead of deductive. The D-N type can be seen as a limiting case of the more general I-S type, the measure of certainty involved being complete, or probability
Probability
Probability is ordinarily used to describe an attitude of mind towards some proposition of whose truth we arenot certain. The proposition of interest is usually of the form "Will a specific event occur?" The attitude of mind is of the form "How certain are we that the event will occur?" The...

 1, in the former case, whereas it is less than complete, probability < 1, in the latter case.

In this view, the D-N mode of reasoning, in addition to being used to explain particular occurrences, can also be used to explain general regularities, simply by deducing them from still more general laws.

Finally, the deductive-statistical (D-S) type of explanation, properly regarded as a subclass of the D-N type, explains statistical regularities by deduction from more comprehensive statistical laws. (Salmon 1990, pp. 8–9).

Such was the received view of scientific explanation from the point of view of logical empiricism, that Salmon says "held sway" during the third quarter of the last century (Salmon, p. 10).

Deduction and Induction

Deductive logic and inductive logic are quite different in their approaches.

Deductive logic is the reasoning of proof, or logical implication. It is the logic used in mathematics and other axiom based systems such as formal logic. In a deductive system, there will be axioms (postulates) which are not proven. Indeed, they cannot be proven without circularity. There will also be primitive terms which are not defined, as they cannot be defined without circularity. For example, one can define a line as a set of points, but to then define a point as the intersection of two lines would be circular. Because of these interesting characteristics of deductive systems, Bertrand Russell humorously referred to mathematics as “the field where we don’t know what we are talking about, nor whether or not what we say is true”. All theorems and corollaries are proven by exploring the implications of the axioms and other theorems that have previously been developed. New terms are defined using the primitive terms and other derived definitions based on those primitive terms.

In a deductive system, one can correctly use the term "proof", as applying to a theorem. To say that a theorem is proven means that it is impossible for the axioms to be true and the theorem to be false. (We are assuming the law of the excluded middle which is the basis of Western thought) For example, we could do a simple syllogism such as the following:
  1. Arches National Park lies within the state of Utah.
  2. I am standing in Arches National Park.
  3. Therefore, I am standing in the state of Utah.


Notice that it is not possible (assuming all of the trivial qualifying criteria are supplied) to be in Arches and not be in Utah. However, one can be in Utah while not in Arches National Park. The implication only works in one direction. Statements (1) and (2) taken together imply statement (3). Statement (3) does not imply anything about statements (1) or (2). Notice that we have not proven statement (3), but we have shown that statements (1) and (2) together imply statement (3). In mathematics, what is proven is not the truth of a particular theorem, but that the axioms of the system imply the theorem. In other words, it is impossible for the axioms to be true and the theorem to be false. The strength of deductive systems is that they are sure of their results. The weakness is that they are abstract constructs which are, unfortunately, one step removed from the physical world. They are very useful however, as mathematics has provided great insights into natural science by providing useful models of natural phenomena. One result is the development of products and processes that benefit mankind.

Learning about the physical world requires the use of inductive logic. This is the logic of theory building. It is useful in such widely divergent enterprises as science and crime scene detective work. One makes a set of observations, and seeks to explain what one sees. The observer forms a theory in an attempt to explain what he/she has observed. The theory will have implications, which will point to certain other observations that would naturally result from either a repeat of the experiment or making more observations from a slightly different set of circumstances. If the predicted observations hold true, one feels excitement that they may be on the right track. However, the theory has not been proven. The theory implies that certain observations should follow, but positive observations do not imply the theory. They only make it more believable. It is quite possible that some other theory could also account for the known observations, and may do better with future experiments. The implication flows in only one direction, as in the syllogism used in the discussion on deduction. Therefore, it is never correct to say that a scientific principle or theory has been proven. (At least not in the rigorous sense of proof used in deductive systems).

A classic example of this is the study of gravitation. Newton formed a law for gravitation stating that the force of gravitation is directly proportional to the product of the two masses, and inversely proportional to the square of the distance between them. For over 170 years, all observations seemed to validate his equation. However, telescopes eventually became powerful enough to see a slight discrepancy in the orbit of Mercury. Scientists tried everything imaginable to explain the discrepancy, but they could not do so using the objects that would bear on the orbit of Mercury. Eventually Einstein developed his theory of General Relativity and it explained the orbit of Mercury and all other known observations dealing with gravitation. During the long period of time when scientists were making observations that seemed to validate Newton’s theory, they did not in fact prove his theory to be true. However, it must have seemed at the time that they did. It only took one counter-example (Mercury’s orbit) to prove that there was something wrong with his theory. This is typical of inductive logic. All of the observations that seem to validate the theory, do not prove its truth. But one counter-example can prove it false. That means that deductive logic is used in the evaluation of a theory. In other words, if A implies B, then not B implies not A. Einstein’s theory of General Relativity has been supported by many observations using the best scientific instruments and experiments. However, his theory now has the same status as Newton’s theory of gravitation prior to seeing the problems in the orbit of Mercury. It is highly credible and validated with all we know, but it is not proven. It is only the best we have at this point in time.

A brief overview of the scientific method would then contain these steps as a minimum:
  1. Make a set of observations regarding the phenomenon being studied.
  2. Form a hypothesis that might explain the observations. (Inductive Step)
  3. Identify the implications and outcomes that must follow, if the hypothesis is to be true.
  4. Perform other experiments or observations to see if any of the predicted outcomes fail.
  5. If any predicted outcomes fail, the hypothesis is proven false since if A implies B, then not B implies not A. (Deductive Logic) It is then necessary to change the hypothesis and go back to step 3. If the predicted outcomes are confirmed, the hypothesis is not proved, but rather can be said to be consistent with known data.


Arguments from analogy are another type of inductive reasoning. In arguing from analogy, one infers that since two things are alike in several respects, they are likely to be alike in another respect. This is, of course, an assumption. It is natural to attempt to find similarities between two phenomena and wonder what one can learn from those similarities. However, to notice that two things share attributes in several respects does not imply any similarities in other respects. It is possible that the observer has already noticed all of the attributes that are shared and any other attributes will be distinct. Argument from analogy is an unreliable method of reasoning that can lead to erroneous conclusions, and thus cannot be used to establish scientific facts.

See also

  • Deductive-nomological
    Deductive-nomological
    The deductive-nomological model is a formalized view of scientific explanation in natural language. It characterizes scientific explanations primarily as deductive arguments with at least one natural law statement among its premises...

  • Explanandum and explanans
    Explanandum
    An explanandum is a phenomenon that needs to be explained and its explanans is the explanation of that phenomenon. For example, one person may pose an explanandum by asking "Why is there smoke?", and another may provide an explanans by responding "Because there is a fire"...

  • Hypothetico-deductive method
  • Inquiry
    Inquiry
    An inquiry is any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem. A theory of inquiry is an account of the various types of inquiry and a treatment of the ways that each type of inquiry achieves its aim.-Deduction:...

  • Scientific method
    Scientific method
    Scientific method refers to a body of techniques for investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge. To be termed scientific, a method of inquiry must be based on gathering empirical and measurable evidence subject to specific principles of...


External links

For interesting explanations regarding the orbit of Mercury and General Relativity, the following links are useful:
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK