Mesenchymal-epithelial transition
Encyclopedia
A mesenchymal-epithelial transition (MET) is a reversible biological process that involves the transition from motile, multipolar or spindle-shaped mesenchymal cells to planar arrays of polarized cells called epithelia. MET is the reverse process of epithelial-mesenchymal transition (EMT)
Epithelial-mesenchymal transition
Epithelial-mesenchymal transition or transformation is a hypothesized program of development of biological cells characterized by loss of cell adhesion, repression of E-cadherin expression, and increased cell mobility...

. Unlike epithelial cells - which are stationary and characterized by an apical-basal polarity, tight junctions, and expression of cell-cell adhesion markers such as E-cadherin, mesenchymal cells do not make mature cell-cell contacts, can invade through the ECM, and express markers such as vimentin, fibronectin, N-cadherin, Twist, and Snail. METs occur in normal development, cancer metastasis, and induced pluripotent stem cell reprogramming.

MET in Development

During embryogenesis and early development, cells switch back and forth between different cellular phenotypes via MET and its reverse process, epithelial-mesenchymal transition (EMT)
Epithelial-mesenchymal transition
Epithelial-mesenchymal transition or transformation is a hypothesized program of development of biological cells characterized by loss of cell adhesion, repression of E-cadherin expression, and increased cell mobility...

. Developmental METs have been studied most extensively in embryogenesis during nephrogenesis, but also occurs in somitogenesis, cardiogenesis, and hepatogenesis. While the mechanism in which MET occurs during each organ morphogenesis is similar in that epithelium-associated genes are upregulated and mesenchyme-associated genes are downregulated, each process has a unique signaling pathway to induce MET and these changes in gene expression profiles.

One example of this, the most well described of the developmental METs, is kidney ontogenesis. The mammalian kidney is primarily formed by two early structures: the ureteric bud and the nephrogenic mesenchyme, which form the collecting duct and nephrons respectively (see kidney development
Kidney development
Kidney development, or nephrogenesis, describes the embryologic origins of the kidney, a major organ in the urinary system. It is often considered in the broader context of the development of the urinary and reproductive organs.-Phases:...

 for more details). During kidney ontogenesis, a reciprocal induction of the ureteric bud epithelium and nephrogenic mesenchyme occurs. As the ureteric bud grows out of the Wolffian duct, the nephrogenic mesenchyme induces the ureteric bud to branch. Concurrently, the ureteric bud induces the nephrogenic mesenchyme to condense around the bud and undergo MET to form the renal epithelium, which ultimately forms the nephron. Growth factors, integrins, cell adhesion molecules, and protooncogenes, such as c-ret, c-ros, and c-met, mediate the reciprocal induction in metanephrons and consequent MET.

Another example of developmental MET occurs during somitogenesis. Vertebrate somites, the precursors of axial bones and trunk skeletal muscles, are formed by the maturation of the presomitic mesoderm (PSM). The PSM, which is composed of mesenchymal cells, undergoes segmentation by delineating somite boundaries (see somitogenesis
Somitogenesis
Somitogenesis is the process by which somites are produced. Somites are bilaterally paired blocks of mesoderm that form along the anterior-posterior axis of the developing embryos of segmented animals, often originating in an anterior to posterior direction. In vertebrates, somites give rise to...

 for more details). Each somite is encapsulated by an epithelium, formerly mesenchymal cells that had undergone MET. Two Rho family GTPases – Cdc42 and Rac1 – as well as the transcription factor Paraxis are required for chick somitic MET.

MET in Cancer

While relatively little is known about the role MET plays in cancer when compared to the extensive studies of EMT in tumor metastasis, MET is believed to participate in the establishment and stabilization of distant metastases by allowing cancerous cells to regain epithelial properties and integrate into distant organs. In recent years, researchers have begun to investigate MET as one of many potential therapeutic targets in the prevention of metastases.

MET in iPS Cell Reprogramming

A number of different cellular processes must take place in order for somatic cells to undergo reprogramming into induced pluripotent stem cells (iPS cells). iPS cell reprogramming, also known as somatic cell reprogramming, can be achieved by ectopic expression of Oct4, Klf4, Sox2, and c-Myc (OKSM). Upon induction, mouse fibroblasts must undergo MET to successfully begin the initiation phase of reprogramming. Epithelial-associated genes such as E-cadherin/Cdh1, Cldns -3, -4, -7, -11, Occludin (Ocln), Epithelial cell adhesion molecule (Epcam), and Crumbs homolog 3 (Crb3), were all upregulated before Nanog, a key transcription factor in maintaining pluripotency, was turned on. Additionally, mesenchymal-associated genes such as Snail, Slug, Zeb -1, -2, and N-cadherin were downregulated within the first 5 days post-OKSM induction. Addition of exogenous TGF-β1, which blocks MET, decreased iPS reprogramming efficiency significantly. These findings are all consistent with previous observations that embryonic stem cells resemble epithelial cells and express E-cadherin.

Recent studies have also suggested that ectopic expression of Klf4 in iPS cell reprogramming may be specifically responsible for inducing E-cadherin expression by binding to promoter regions and the first intron of CDH1 (the gene encoding for E-cadherin).
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK