Jet (particle physics)
Encyclopedia
A jet is a narrow cone of hadrons and other particles produced by the hadronization
of a quark
or gluon
in a particle physics
or heavy ion
experiment. Because of QCD
confinement
, particles carrying a color charge, such as quarks, cannot exist in free form. Therefore they fragment into hadrons before they can be directly detected, becoming jets. These jets must be measured in a particle detector
and studied in order to determine the properties of the original quark.
In relativistic heavy ion physics, jets are important because the originating hard scattering is a natural probe for the QCD matter created in the collision, and indicate its phase. When the QCD matter undergoes a phase crossover into quark gluon plasma, the energy loss in the medium grows significantly, effectively quenching the outgoing jet.
Example of jet analysis techniques are:
Example of jet fragmentation models are:
s in the partonic picture.
The probability of creating a certain set of jets is described by the jet production cross section, which is an average of elementary perturbative QCD quark, antiquark, and gluon processes, weighted by the parton distribution functions. For the most frequent jet pair production process, the two particle scattering, the jet production cross section in a hadronic collision is given by
with
Elementary cross sections are e.g. calculated to the leading order of perturbation theory in Peskin & Schroeder (1995), section 17.4. A review of various parameterizations of parton distribution functions and the calculation in the context of Monte Carlo event generators is discussed in T. Sjöstrand et al. (2003), section 7.4.1.
calculations may have colored partons in the final state, but only the colorless hadrons they ultimately produce are observed experimentally. Thus, to describe what is observed in a detector as a result of a given process, all outgoing colored partons must first undergo parton showering and then combination of the produced partons into hadrons. The terms fragmentation and hadronization are often used interchangeably in the literature to describe soft QCD
radiation, formation of hadrons, or both processes together.
As the parton which was produced in a hard scatter exits the interaction, the strong coupling constant will increase with its separation. This increases the probability for QCD
radiation, which is predominantly shallow-angled with respect to the originating parton. Thus, one parton will radiate gluons, which will in turn radiate pairs and so on, with each new parton nearly collinear with its parent. This can be described by convolving the spinors with fragmentation functions , in a similar manner to the evolution of parton density functions. This is described by a Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP
) type equation
Parton showering produces partons of successively lower energy, and must therefore exit the region of validity for perturbative QCD
. Phenomenological models must then be applied to describe the length of time when showering occurs, and then the combination of colored partons into bound states of colorless hadrons, which is inherently not-perturbative. One example is the Lund String Model
, which is implemented in many modern event generators
.
Hadronization
In particle physics, hadronization is the process of the formation of hadrons out of quarks and gluons. This occurs after high-energy collisions in a particle collider in which free quarks or gluons are created. Due to postulated colour confinement, these cannot exist individually...
of a quark
Quark
A quark is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. Due to a phenomenon known as color confinement, quarks are never directly...
or gluon
Gluon
Gluons are elementary particles which act as the exchange particles for the color force between quarks, analogous to the exchange of photons in the electromagnetic force between two charged particles....
in a particle physics
Particle physics
Particle physics is a branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation. In current understanding, particles are excitations of quantum fields and interact following their dynamics...
or heavy ion
Ion
An ion is an atom or molecule in which the total number of electrons is not equal to the total number of protons, giving it a net positive or negative electrical charge. The name was given by physicist Michael Faraday for the substances that allow a current to pass between electrodes in a...
experiment. Because of QCD
Quantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...
confinement
Colour confinement
Color confinement, often simply called confinement, is the physics phenomenon that color charged particles cannot be isolated singularly, and therefore cannot be directly observed. Quarks, by default, clump together to form groups, or hadrons. The two types of hadrons are the mesons and the baryons...
, particles carrying a color charge, such as quarks, cannot exist in free form. Therefore they fragment into hadrons before they can be directly detected, becoming jets. These jets must be measured in a particle detector
Particle detector
In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify high-energy particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a...
and studied in order to determine the properties of the original quark.
In relativistic heavy ion physics, jets are important because the originating hard scattering is a natural probe for the QCD matter created in the collision, and indicate its phase. When the QCD matter undergoes a phase crossover into quark gluon plasma, the energy loss in the medium grows significantly, effectively quenching the outgoing jet.
Example of jet analysis techniques are:
- jet reconstructionEvent reconstructionIn a particle detector experiment, event reconstruction is the process of interpreting the electronic signals produced by the detector to determine the original particles that passed through, their momenta, directions, and the primary vertex of the event...
(e.g., kT algorithm, cone algorithm) - jet correlation
- flavor tagging (e.g., b-taggingB-taggingb-tagging is an example of a jet flavor tagging method used in modern high-energy particle physics experiments. It is the identification of jets originating from bottom quarks .-Importance:...
).
Example of jet fragmentation models are:
- Lund string modelLund string modelIn particle physics, the Lund string model is a phenomenological model of hadronization. It treats all but the highest-energy gluons as field lines, which are attracted to each other due to the gluon self-interaction and so form a narrow tube of strong color field...
Jet production
Jets are produced in QCD hard scattering processes, creating high transverse momentum quarks or gluons, or collectively called partonParton (particle physics)
In particle physics, the parton model was proposed by Richard Feynman in 1969 as a way to analyze high-energy hadron collisions. It was later recognized that partons describe the same objects now more commonly referred to as quarks and gluons...
s in the partonic picture.
The probability of creating a certain set of jets is described by the jet production cross section, which is an average of elementary perturbative QCD quark, antiquark, and gluon processes, weighted by the parton distribution functions. For the most frequent jet pair production process, the two particle scattering, the jet production cross section in a hadronic collision is given by
with
- x, Q2: longitudinal momentum fraction and momentum transfer
- : perturbative QCD cross section for the reaction ij → k
- : parton distribution function for finding particle species i in beam a.
Elementary cross sections are e.g. calculated to the leading order of perturbation theory in Peskin & Schroeder (1995), section 17.4. A review of various parameterizations of parton distribution functions and the calculation in the context of Monte Carlo event generators is discussed in T. Sjöstrand et al. (2003), section 7.4.1.
Jet fragmentation
Perturbative QCDQuantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...
calculations may have colored partons in the final state, but only the colorless hadrons they ultimately produce are observed experimentally. Thus, to describe what is observed in a detector as a result of a given process, all outgoing colored partons must first undergo parton showering and then combination of the produced partons into hadrons. The terms fragmentation and hadronization are often used interchangeably in the literature to describe soft QCD
Quantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...
radiation, formation of hadrons, or both processes together.
As the parton which was produced in a hard scatter exits the interaction, the strong coupling constant will increase with its separation. This increases the probability for QCD
Quantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...
radiation, which is predominantly shallow-angled with respect to the originating parton. Thus, one parton will radiate gluons, which will in turn radiate pairs and so on, with each new parton nearly collinear with its parent. This can be described by convolving the spinors with fragmentation functions , in a similar manner to the evolution of parton density functions. This is described by a Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
Giorgio Parisi
Giorgio Parisi is an Italian theoretical physicist. He is best known for his works concerning statistical mechanics, quantum field theory and various aspects of physics, mathematics and science in general....
(DGLAP
DGLAP
DGLAP are the authors who first wrote the QCD evolution equation of the same name. DGLAP was first published in the western world by Altarelli and Parisi in 1977, hence DGLAP and its specialisations are sometimes still called Altarelli-Parisi equations...
) type equation
Parton showering produces partons of successively lower energy, and must therefore exit the region of validity for perturbative QCD
Quantum chromodynamics
In theoretical physics, quantum chromodynamics is a theory of the strong interaction , a fundamental force describing the interactions of the quarks and gluons making up hadrons . It is the study of the SU Yang–Mills theory of color-charged fermions...
. Phenomenological models must then be applied to describe the length of time when showering occurs, and then the combination of colored partons into bound states of colorless hadrons, which is inherently not-perturbative. One example is the Lund String Model
Lund string model
In particle physics, the Lund string model is a phenomenological model of hadronization. It treats all but the highest-energy gluons as field lines, which are attracted to each other due to the gluon self-interaction and so form a narrow tube of strong color field...
, which is implemented in many modern event generators
Event generator
Event generators are software libraries that generate simulated high-energy particle physics events.They randomly generate events as those produced in particle accelerators, collider experiments or during the initial phases of the Universe creation....
.