Insulin degrading enzyme
Encyclopedia
Insulin-degrading enzyme, also known as IDE is a human enzyme
Enzyme
Enzymes are proteins that catalyze chemical reactions. In enzymatic reactions, the molecules at the beginning of the process, called substrates, are converted into different molecules, called products. Almost all chemical reactions in a biological cell need enzymes in order to occur at rates...

.

Known alternatively as insulysin or insulin protease, Insulin Degrading Enzyme (IDE) is a large zinc-binding protease
Protease
A protease is any enzyme that conducts proteolysis, that is, begins protein catabolism by hydrolysis of the peptide bonds that link amino acids together in the polypeptide chain forming the protein....

 of the M16A metalloprotease subfamily known to cleave multiple short polypeptides that vary considerably in sequence. IDE was first identified by its ability to degrade the B chain of the hormone insulin
Insulin
Insulin is a hormone central to regulating carbohydrate and fat metabolism in the body. Insulin causes cells in the liver, muscle, and fat tissue to take up glucose from the blood, storing it as glycogen in the liver and muscle....

. This activity was observed over fifty years ago, though the enzyme specifically responsible for B chain cleavage was identified more recently. This discovery revealed considerable amino acid sequence homology between IDE and the previously characterized bacterial protease pitrilysin, suggesting a common proteolytic mechanism. IDE, which migrates at 110 kDa during gel electrophoresis under denaturing conditions, has since been shown to have additional substrates, including the signaling peptides glucagon
Glucagon
Glucagon, a hormone secreted by the pancreas, raises blood glucose levels. Its effect is opposite that of insulin, which lowers blood glucose levels. The pancreas releases glucagon when blood sugar levels fall too low. Glucagon causes the liver to convert stored glycogen into glucose, which is...

, TGF alpha
TGF alpha
Transforming growth factor alpha is upregulated in some human cancers. It is produced in macrophages, brain cells, and keratinocytes, and induces epithelial development. It is closely related to EGF, and can also bind to the EGF receptor with similar effects...

, and β-endorphin.

IDE and Alzheimer's disease

Considerable interest in IDE has been stimulated due to the discovery that IDE can degrade amyloid beta
Amyloid beta
Amyloid beta is a peptide of 36–43 amino acids that is processed from the Amyloid precursor protein. While it is most commonly known in association with Alzheimer's disease, it does not exist specifically to cause disease...

 (Aβ), a peptide implicated in the pathogenesis of Alzheimer’s disease. The underlying cause or causes of the disease are unclear, though the primary neuropathology observed is the formation of amyloid plaques and neurofibrillary tangles. One hypothesized mechanism of disease, called the amyloid hypothesis, suggests that the causative agent is the hydrophobic peptide Aβ, which forms quaternary structures that, by an unclear mechanism, cause neuronal death. Aβ is a byproduct generated as the result of proteolytic processing of the amyloid precursor protein
Amyloid precursor protein
Amyloid precursor protein is an integral membrane protein expressed in many tissues and concentrated in the synapses of neurons. Its primary function is not known, though it has been implicated as a regulator of synapse formation, neural plasticity and iron export...

 (APP) by proteases referred to as the β and γ secretase
Secretase
Secretases are enzymes that "snip" pieces off a longer protein that is embedded in the cell membrane.thumb|300px|right|Processing of the amyloid precursor protein Among other roles in the cell, secretases act on the amyloid precursor protein to cleave the protein into three fragments...

s. The physiological role of this processing is unclear, though it may play a role in nervous system development.

Numerous in vitro and in vivo studies have shown correlations between IDE, Aβ degradation, and Alzheimer’s disease. Mice engineered to lack both alleles of the IDE gene exhibit a 50% decrease in Aβ degradation, resulting in cerebral accumulation of Aβ. Studies of genetically inherited forms of Alzheimer’s show reduction in both IDE expression and catalytic activity among affected individuals. Despite the evident role of IDE in disease, relatively little is known about its physiological functions. These may be diverse, as IDE has been localized to several locations, including the cytosol, peroxisomes, endosomes, proteasome complexes, and the surface of cerebrovascular endothelial cells.

IDE structure and function

Structural studies of IDE by Shen et al. have provided insight into the functional mechanisms of the protease. Reminiscent of the previously determined structure of the bacterial protease pitrilysin, the IDE crystal structure reveals defined N and C terminal units that form a proteolytic chamber containing the zinc-binding active site. In addition, it appears that IDE can exist in two conformations: an open conformation, in which substrates can access the active site, and a closed state, in which the active site is contained within the chamber formed by the two concave domains. Targeted mutations that prevent the closed conformation result in a 40-fold increase in catalytic activity. Based upon this observation, it has been proposed that a possible therapeutic approach to Alzheimer’s might involve shifting the conformational preference of IDE to the open state, and thus increasing Aβ degradation, preventing aggregation, and, ideally, preventing the neuronal loss that leads to disease symptoms.

Regulation of extracellular amyloid β-protein

Reports of IDE localized to the cytosol and peroxisomes have raised concerns regarding how the protease could degrade endogenous Aβ. Several studies have detected insulin-degrading activity in the conditioned media of cultured cells, suggesting the permeability of the cell membrane and thus possible release of IDE from leaky cells. Qiu and colleagues revealed the presence of IDE in the extracellular media using antibodies to the enzyme. They also quantified levels of Aβ-degrading activity using elution from column chromatography. Correlating the presence of IDE and Aβ-degrading activity in the conditioning medium confirmed that leaky membranes are responsible for extracellular IDE activity.

Potential role for IDE in the oligomerization of Aβ

Recent studies have observed that the oligomerization of synthetic Aβ was completely inhibited by the competitive IDE substrate, insulin. These findings suggest that IDE activity is capable of joining of several Aβ fragments together. Qui et al. hypothesized that the Aβ fragments generated by IDE can either enhance oligomerization of the Aβ peptide or can oligomerize themselves. It is also entirely possible that IDE could mediate the degradation and oligomerization of Aβ by independent actions that have yet to be investigated.

Human insulin-degrading Enzyme working mechanism

Despite the enormous attention dedicated to IDE, several crucial aspects, namely the catalytic mechanism of this enzyme remain poorly understood. Studies present in literature explored many aspects concerning IDE, but none of them deals with the mechanistic details of the proteolysis performed by this enzyme. It is understood that IDE cleaves insulin B chain as well as amyloid β at several sites. Recently, Orazio and colleagues unveil how the cleavage of two peptides occurs by using the density functional theory at the active site of IDE (Scheme 1) to explore the catalytic mechanism of IDE; hence, they provide novel fundamental insights into the behavior of this enzyme.

Scheme 1

The steps involved in the whole process are collected in Scheme 2.

Scheme 2

The first step of the mechanism includes a zinc-bound hydroxide group performing a nucleophilic attack on a carbon substrate that materializes into the intermediate INT1. In this species, we can note that the zinc-bound hydroxide is completely transferred on the carbonyl carbon of substrate as a consequence of the Zn2+−OH bond breaking. In TS2, the Glu111 residue rotates to assume the right disposition to form two hydrogen bonds with the amide nitrogen and the −OH group linked to the carbon atom of substrate, thus behaving as hydrogen donor and acceptor, simultaneously. The formation of the second cited bond favors the re-establishment of the Zn2+−OH bond broken previously at the INT1 level. The nucleophilic addition and the protonation of peptide amide nitrogen is a very fast process that is believed to occur as a single step in the catalytic process. The final species on the path is the product PROD. As a consequence of transfer of the proton of Glu111 onto the amide nitrogen of substrate that occurred in TS3, the peptide N—C bond is broken.

A look at the whole reaction path indicates that the rate-determining step in this process is the nucleophilic addition that implies an expense of 17.2 kcal/mol. After this point, the catalytic event should proceed without particular obstacles.

External links

  • The MEROPS
    Merops
    Merops may refer to:* Merops , a genus of bee-eaters.* MEROPS, an on-line database for peptidases.It may also refer to several figures from Greek mythology:* King of Ethiopia, husband of Clymene, who lay with Helios and bore Phaethon...

    online database for peptidases and their inhibitors: M16.002
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK