Henderson limit
Encyclopedia
The value of the Henderson limit is defined as 2 × 107 Gy (J/kg).
Although generalizable, the limit is defined in the context of biomolecular X-ray crystallography
, where a typical experiment consists of exposing a single frozen crystal of a macromolecule (generally protein
, DNA
or RNA
) to an intense X-ray beam. The beams that are diffracted are then analyzed towards obtaining an atomically resolved model of the crystal.
The limit is defined as the X-ray dose (energy per unit mass) a cryo-cooled crystal can absorb before the diffraction pattern decays to half of its original intensity. Such decay presents itself as a problem for crystallographers who require that the diffraction intensities decay as little as possible, to maximize the signal to noise ratio in order to determine accurate atomic models that describe the crystal.
Although the process is still not fully understood, diffraction patterns of crystals typically decay with X-ray exposure due to a number of processes which non uniformly and irreversibly modify molecules that compose the crystal. These modifications induce disorder and thus decrease the intensity of Bragg diffraction. The processes behind these modifications include primary damage via the photo electric effect, covalent modification by free radicals, oxidation (methionine residues), reduction (disulfide bond
s) and decarboxylation
(glutamate, aspartate residues).
Although generalizable, the limit is defined in the context of biomolecular X-ray crystallography
X-ray crystallography
X-ray crystallography is a method of determining the arrangement of atoms within a crystal, in which a beam of X-rays strikes a crystal and causes the beam of light to spread into many specific directions. From the angles and intensities of these diffracted beams, a crystallographer can produce a...
, where a typical experiment consists of exposing a single frozen crystal of a macromolecule (generally protein
Protein
Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form, facilitating a biological function. A polypeptide is a single linear polymer chain of amino acids bonded together by peptide bonds between the carboxyl and amino groups of...
, DNA
DNA
Deoxyribonucleic acid is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms . The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in...
or RNA
RNA
Ribonucleic acid , or RNA, is one of the three major macromolecules that are essential for all known forms of life....
) to an intense X-ray beam. The beams that are diffracted are then analyzed towards obtaining an atomically resolved model of the crystal.
The limit is defined as the X-ray dose (energy per unit mass) a cryo-cooled crystal can absorb before the diffraction pattern decays to half of its original intensity. Such decay presents itself as a problem for crystallographers who require that the diffraction intensities decay as little as possible, to maximize the signal to noise ratio in order to determine accurate atomic models that describe the crystal.
Although the process is still not fully understood, diffraction patterns of crystals typically decay with X-ray exposure due to a number of processes which non uniformly and irreversibly modify molecules that compose the crystal. These modifications induce disorder and thus decrease the intensity of Bragg diffraction. The processes behind these modifications include primary damage via the photo electric effect, covalent modification by free radicals, oxidation (methionine residues), reduction (disulfide bond
Disulfide bond
In chemistry, a disulfide bond is a covalent bond, usually derived by the coupling of two thiol groups. The linkage is also called an SS-bond or disulfide bridge. The overall connectivity is therefore R-S-S-R. The terminology is widely used in biochemistry...
s) and decarboxylation
Decarboxylation
Decarboxylation is a chemical reaction that releases carbon dioxide . Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain. The reverse process, which is the first chemical step in photosynthesis, is called carbonation, the addition of CO2 to...
(glutamate, aspartate residues).