Grazing-incidence small-angle X-ray scattering
Encyclopedia
Grazing-incidence small-angle scattering (GISAS) is a scattering technique used to study nanostructured surfaces and thin films. The scattered probe is either photons (Grazing-incidence small-angle X-ray scattering, GISAXS) or neutrons (Grazing-incidence small-angle neutron scattering, GISANS). GISAS combines the accessible length scales of Small-angle scattering
Small-angle scattering
Small-angle scattering is a scattering technique based on the deflection of a beam of particles, or an electromagnetic or acoustic wave, away from the straight trajectory after it interacts with structures that are much larger than the wavelength of the radiation. The deflection is small hence...

 (SAS: SAXS
SAXS
Small-angle scattering is a fundamental method for structure analysis of materials, including biological materials. Small-angle scattering allows one to study the structure of a variety of objects such as solutions of biological macromolecules, nanocomposites, alloys, synthetic polymers, etc...

 or SANS
SANS
SANS can refer to*Small-angle neutron scattering*SANS Institute *Sympathetic Autonomic Nervous SystemSee also* Sans...

) and the surface sensitivity of grazing incidence diffraction
Grazing incidence diffraction
Grazing incidence X-ray and neutron diffraction , typically from a crystalline structure uses small incident angles for the incoming X-ray or neutron beam, so that diffraction can be made surface sensitive. It is used to study surfaces and layers because wave penetration is limited. Distances are...

 (GID).

GISAS applications

A typical application of GISAS is the characterisation of self-assembly
Self-assembly
Self-assembly is a term used to describe processes in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction...

 and self-organization
Self-organization
Self-organization is the process where a structure or pattern appears in a system without a central authority or external element imposing it through planning...

 on the nanoscale in thin films. Systems studied by GISAS include quantum dot arrays,
growth instabilities formed during in-situ growth,
self-organized nanostructures in thin films of block copolymers,
silica mesophases,
and nanoparticles.

GISAXS was introduced by Levine and Cohen to study the dewetting of gold deposited on a glass surface. The technique was further developed by Naudon and coworkers to study metal agglomerates on surfaces and in buried interfaces. With the advent of nanoscience other applications evolved quickly, first in hard matter such as the characterization of quantum dots on semiconductor surfaces and the in-situ characterization of metal deposits on oxide surfaces. This was soon to be followed by soft matter
Soft matter
Soft matter is a subfield of condensed matter comprising a variety of physical states that are easily deformed by thermal stresses or thermal fluctuations. They include liquids, colloids, polymers, foams, gels, granular materials, and a number of biological materials...

 systems such as ultrathin polymer
Polymer
A polymer is a large molecule composed of repeating structural units. These subunits are typically connected by covalent chemical bonds...

 films, polymer blends, block copolymer films and other self-organized nanostructured thin films that have become indispensable for nanoscience and technology. Future challenges of GISAS may lie in biological applications, such as proteins, peptides, or viruses attached to surfaces or in lipid layers.

GISAXS interpretation

As a hybrid technique, GISAXS combines concepts from transmission SAXS and from GID. From SAXS it uses the form factors and structure factors. From GID it uses the scattering geometry close to the critical angles of substrate and film, and the two-dimensional character of the scattering, giving rise to diffuse rods of scattering intensity perpendicular to the surface. GISAXS also shares elements of the scattering technique of diffuse reflectivity such as the Yoneda/Vinyard peak at the critical angle of the sample, and the scattering theory, the distorted wave Born approximation (DWBA). However, while diffuse reflectivity remains confined to the incident plane (the plane given by the incident beam and the surface normal), GISAXS explores the whole scattering from the surface in all directions, typically utilizing an area detector. Thus GISAXS gains access to a wider range of lateral and vertical structures and, in particular, is sensitive to the morphology and preferential alignment of nanoscale objects at the surface or inside the thin film.

As a particular consequence of the DWBA, the refraction of x-rays has to be always taken into account in the case of thin film studies, due to the fact that scattering angles are small, often less than 1 deg. The refraction correction applies to the perpendicular component of the scattering vector with respect to the substrate while the parallel component is unaffected. Thus parallel scattering can often be interpreted within the kinematic theory of SAXS, while refractive corrections apply to the scattering along perpendicular cuts of the scattering image, for instance along a scattering rod.

In the interpretation of GISAXS images some complication arises in the scattering from low-Z films e.g. organic materials on silicon wafers, when the incident angle is in between the critical angles of the film and the substrate. In this case, the reflected beam from the substrate has a similar strength as the incident beam and thus the scattering from the reflected beam from the film structure can give rise to a doubling of scattering features in the perpendicular direction. This as well as interference between the scattering from the direct and the reflected beam can be fully accounted for by the DWBA scattering theory.

These complications are often more than offset by the fact that the dynamic enhancement of the scattering intensity is significant. In combination with the straightforward scattering geometry, where all relevant information is contained in a single scattering image, in-situ and real-time experiments are facilitated. Specifically self-organization during MBE growth and re-organization processes in block copolymer films under the influence of solvent vapor have been characterized on the relevant timescales ranging from seconds to minutes. Ultimately the time resolution is limited by the x-ray flux on the samples necessary to collect an image and the read-out time of the area detector.

Experimental practice

Dedicated or partially dedicated GISAXS beamlines exist at many Synchrotron light sources (for instance APS
Advanced Photon Source
The Advanced Photon Source at Argonne National Laboratory is a national synchrotron-radiation light source research facility funded by the United States Department of Energy Office of Science...

, CHESS, ESRF
European Synchrotron Radiation Facility
The European Synchrotron Radiation Facility is a joint research facility supported by 19 countries situated in Grenoble, France...

, HASYLAB, NSLS
National Synchrotron Light Source
The National Synchrotron Light Source at Brookhaven National Laboratory in Upton, New York is a national user research facility funded by the U.S. Department of Energy...

, Pohang Light Source).

At neutron research facilities,
GISANS is increasingly used,
typically on small-angle (SANS) instruments or on reflectometers.

GISAS does not require any specific sample preparation other than thin film deposition techniques. Film thicknesses may range from a few nm to several 100 nm, and such thin films are still fully penetrated by the x-ray beam. The film surface, the film interior, as well as the substrate-film interface are all accessible. By varying the incidence angle the various contributions can be identified.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK