Glomerulus (olfaction)
Encyclopedia
The glomerulus is a spherical structure located in the olfactory bulb
of the brain where synapses form between the terminals of the olfactory nerve
and the dendrites of mitral, periglomerular and tufted cells. Each glomerulus is surrounded by a heterogeneous population of juxtaglomerular neurons (that include periglomerular, short axon, and external tufted cells) and glial cells. All glomeruli are located near the surface of the olfactory bulb. They are the initial sites for synaptic
processing of odor information coming from the nose. A glomerulus is made up of a globular tangle of axon
s from the olfactory receptor neuron
s, and dendrites from the mitral and tufted cells, as well as, from cells that surround the glomerulus such as the external tufted cells, periglomerular cells, short axon cells, and astrocytes. In mammals, glomeruli typically range between 50-120 µm in diameter and number between 1800 and 2400 depending on the species. Each glomerulus is composed of two compartments, the olfactory nerve zone and the non-olfactory nerve zone. The olfactory nerve zone is composed of preterminals and terminals of the olfactory nerve and is where the olfactory receptor cells make synapses on their targets. The non-olfactory nerve zone is composed of the dendritic processes of intrinsic neurons and is where dendrodendritic interactions between intrinsic neurons occur.
to the olfactory cortex
and have been found to be critical for odorant signal transduction. The olfactory receptor neurons (ORN), which originate in the nasal epithelium express only one type of olfactory receptor (OR). These ORNs then project their axons to the olfactory bulb. In the olfactory bulb, the ORNs synapse with termination in the glomeruli. Each glomerulus receives input from olfactory receptor neurons expressing only one type of olfactory receptor. The glomerular activation patterns within the olfactory bulb are thought to represent the quality of the odor being detected. These activation patterns of glomeruli can change due to changes in airflow rate and odor concentration in the mucus layer of the nasal cavity. The current dogma is that axons from all ORNs expressing the same receptor converge onto one or two glomeruli of a possible 1800 glomeruli in each olfactory bulb. As the axons of the ORNs migrate towards their specific glomeruli they often overshoot into neighboring glomeruli. Thus, a glomerulus representing a specific OR develops slowly and involves considerable axonal reorganization in order to achieve the highly topographical projection observed in adult mice.
pattern of the second-order mitral cells is usually different from that of the olfactory sensory neurons.
Olfactory bulb
The olfactory bulb is a structure of the vertebrate forebrain involved in olfaction, the perception of odors.-Anatomy:In most vertebrates, the olfactory bulb is the most rostral part of the brain. In humans, however, the olfactory bulb is on the inferior side of the brain...
of the brain where synapses form between the terminals of the olfactory nerve
Olfactory nerve
The olfactory nerve, or cranial nerve I, is the first of twelve cranial nerves. It is instrumental in the sense of smell. Derived from the embryonic nasal placode, the olfactory nerve is capable of regeneration.-Anatomy:...
and the dendrites of mitral, periglomerular and tufted cells. Each glomerulus is surrounded by a heterogeneous population of juxtaglomerular neurons (that include periglomerular, short axon, and external tufted cells) and glial cells. All glomeruli are located near the surface of the olfactory bulb. They are the initial sites for synaptic
Synaptic
Synaptic may refer to:*Synapse, part of the nervous system*Synapsis, the pairing of two homologous chromosomes*Synaptic , a Linux graphical package management program for APT See also...
processing of odor information coming from the nose. A glomerulus is made up of a globular tangle of axon
Axon
An axon is a long, slender projection of a nerve cell, or neuron, that conducts electrical impulses away from the neuron's cell body or soma....
s from the olfactory receptor neuron
Olfactory receptor neuron
An olfactory receptor neuron , also called an olfactory sensory neuron , is a transduction cell within the olfactory system. J. Rospars, Dendritic integration in olfactory sensory neurons: a steady-state analysis of how the neuron structure and neuron environment influence the coding of odor...
s, and dendrites from the mitral and tufted cells, as well as, from cells that surround the glomerulus such as the external tufted cells, periglomerular cells, short axon cells, and astrocytes. In mammals, glomeruli typically range between 50-120 µm in diameter and number between 1800 and 2400 depending on the species. Each glomerulus is composed of two compartments, the olfactory nerve zone and the non-olfactory nerve zone. The olfactory nerve zone is composed of preterminals and terminals of the olfactory nerve and is where the olfactory receptor cells make synapses on their targets. The non-olfactory nerve zone is composed of the dendritic processes of intrinsic neurons and is where dendrodendritic interactions between intrinsic neurons occur.
Anatomy
Glomeruli are important waystations in the pathway from the noseHuman nose
The visible part of the human nose is the protruding part of the face that bears the nostrils. The shape of the nose is determined by the ethmoid bone and the nasal septum, which consists mostly of cartilage and which separates the nostrils...
to the olfactory cortex
Piriform cortex
In anatomy of animals, the piriform cortex, or pyriform cortex is a region in the brain.-Anatomy and function:The piriform cortex is part of the rhinencephalon situated in the telencephalon....
and have been found to be critical for odorant signal transduction. The olfactory receptor neurons (ORN), which originate in the nasal epithelium express only one type of olfactory receptor (OR). These ORNs then project their axons to the olfactory bulb. In the olfactory bulb, the ORNs synapse with termination in the glomeruli. Each glomerulus receives input from olfactory receptor neurons expressing only one type of olfactory receptor. The glomerular activation patterns within the olfactory bulb are thought to represent the quality of the odor being detected. These activation patterns of glomeruli can change due to changes in airflow rate and odor concentration in the mucus layer of the nasal cavity. The current dogma is that axons from all ORNs expressing the same receptor converge onto one or two glomeruli of a possible 1800 glomeruli in each olfactory bulb. As the axons of the ORNs migrate towards their specific glomeruli they often overshoot into neighboring glomeruli. Thus, a glomerulus representing a specific OR develops slowly and involves considerable axonal reorganization in order to achieve the highly topographical projection observed in adult mice.
Function
The glomerulus is the basic unit in the odor map of the olfactory bulb. Each odor activates a different pattern of glomeruli, such that, simply by analyzing the different sets of activated glomeruli, one could, in theory, decode the identity of the odor. This odor map, however, is modified by the circuitry within the olfactory bulb so that the spikingAction potential
In physiology, an action potential is a short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, called excitable cells, which include neurons, muscle cells, and...
pattern of the second-order mitral cells is usually different from that of the olfactory sensory neurons.