Generic flatness
Encyclopedia
In algebraic geometry
Algebraic geometry
Algebraic geometry is a branch of mathematics which combines techniques of abstract algebra, especially commutative algebra, with the language and the problems of geometry. It occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex...

 and commutative algebra
Commutative algebra
Commutative algebra is the branch of abstract algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra...

, the theorems of generic flatness and generic freeness state that under certain hypotheses, a sheaf of modules on a scheme
Scheme (mathematics)
In mathematics, a scheme is an important concept connecting the fields of algebraic geometry, commutative algebra and number theory. Schemes were introduced by Alexander Grothendieck so as to broaden the notion of algebraic variety; some consider schemes to be the basic object of study of modern...

 is flat
Flat morphism
In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphism f from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,is a flat map for all P in X...

 or free
Free module
In mathematics, a free module is a free object in a category of modules. Given a set S, a free module on S is a free module with basis S.Every vector space is free, and the free vector space on a set is a special case of a free module on a set.-Definition:...

. They are due to Alexander Grothendieck
Alexander Grothendieck
Alexander Grothendieck is a mathematician and the central figure behind the creation of the modern theory of algebraic geometry. His research program vastly extended the scope of the field, incorporating major elements of commutative algebra, homological algebra, sheaf theory, and category theory...

.

Generic flatness

Generic flatness states that if Y is an integral locally noetherian scheme, is a finite type morphism of schemes, and F is a coherent OX-module, then there is a non-empty open subset U of Y such that the restriction of F to u−1(U) is flat over U.

Because Y is integral, U is a dense open subset of Y. This can be applied to deduce a variant of generic flatness which is true when the base is not integral. Suppose that S is a noetherian scheme, is a finite type morphism, and F is a coherent OX module. Then there exists a partition of S into locally closed subsets S1, ..., Sn with the following property: Give each Si its reduced scheme structure, denote by Xi the fiber product , and denote by Fi the restriction ; then each Fi is flat.

Generic freeness

Generic flatness is a consequence of the generic freeness lemma. Generic freeness states that if A is a noetherian
Noetherian ring
In mathematics, more specifically in the area of modern algebra known as ring theory, a Noetherian ring, named after Emmy Noether, is a ring in which every non-empty set of ideals has a maximal element...

 integral domain, B is a finite type A-algebra, and M is a finite type B-module, then there exists an element f of A such that Mf is a free Af-module. Generic freeness can be extended to the graded situation: If B is graded by the natural numbers, A acts in degree zero, and M is a graded B-module, then f may be chosen such that each graded component of Mf is free.

Generic freeness is proved using Grothendieck's technique of dévissage
Dévissage
In algebraic geometry, dévissage is a technique introduced by Alexander Grothendieck for proving statements about coherent sheaves on noetherian schemes. Dévissage is an adaptation of a certain kind of noetherian induction...

.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK