Expeller
Encyclopedia
Expeller pressing is a mechanical method for extracting oil
Oil
An oil is any substance that is liquid at ambient temperatures and does not mix with water but may mix with other oils and organic solvents. This general definition includes vegetable oils, volatile essential oils, petrochemical oils, and synthetic oils....

 from raw materials. The raw materials are squeezed under high pressure in a single step. When used for the extraction of food oils, typical raw materials are nuts
Nut (fruit)
A nut is a hard-shelled fruit of some plants having an indehiscent seed. While a wide variety of dried seeds and fruits are called nuts in English, only a certain number of them are considered by biologists to be true nuts...

, seeds
SEEDS
SEEDS is a voluntary organisation registered under the Societies Act of India....

 and algae
Algae
Algae are a large and diverse group of simple, typically autotrophic organisms, ranging from unicellular to multicellular forms, such as the giant kelps that grow to 65 meters in length. They are photosynthetic like plants, and "simple" because their tissues are not organized into the many...

, which are supplied to the press in a continuous feed. Expeller presses can recover 75% of the oil from algae. As the raw material is pressed, friction causes it to heat up; in the case of harder nuts (which require higher pressures) the material can exceed temperatures of 120 °F.

An expeller press is a screw-type machine that presses oil seeds through a caged barrel-like cavity. Raw materials enter one side of the press and waste products exit the other side. The machine uses friction and continuous pressure from the screw drives to move and compress the seed material. The oil seeps through small openings that do not allow seed fiber solids to pass through. Afterward, the pressed seeds are formed into a hardened cake, which is removed from the machine. Pressure involved in expeller pressing creates heat in the range of 140-210 F (60-99 C). Some companies claim that they use a cooling apparatus to reduce this temperature to protect certain properties of the oils being extracted.

Expeller processing cannot remove every last trace of liquid (usually oil) from the raw material. A significant amount remains trapped inside of the cake leftover after pressing. In most small scale rural situations this is of little or no importance as the cake that remains after the oil has been removed finds uses in local dishes, in the manufacture of secondary products or for animal feed. Some raw materials however do not release oil by simple expelling; the most notable being rice bran. In order to remove oil from commodities that do not respond to expelling or to extract the final traces of oil after expelling it is necessary to use solvent extraction.

The earliest expeller presses utilized a continuous screw design. The compression screws were much like the screw of a screw conveyor. That is, the helicoid flighting started at one end and ended at the other. Valerius Anderson invented the interrupted screw design and patented it in the year 1900.

What Anderson observed was that, in the continuous flighting arrangement of a compression screw, there are tendencies for slippery materials either to co-rotate with the screw or to pass through with minimal dewatering. He wrote that "brewers' slops, slaughter-house refuse" and other "soft and mushy" materials dewater poorly in continuous screw presses.

His invention consisted of putting interruptions in the flighting of a compression screw. It was much like having a hanger bearing in a screw conveyor: there is no flighting on the shaft at that point, so material tends to stop moving and pile up. It is only after solids accumulate in the gap that the downstream flighting catches material. When this happens, material is forced along its way. The result was better dewatering, a more consistent press cake.

As the years went by, applications of the interrupted screw design were expanded beyond slippery and slimy materials. This took place because competing continuous screw presses worked best only under conditions of constant feed, at constant consistency. If either the consistency or the flow rate diminished, squeezing would diminish until it was inadequate for proper moisture removal. At the same time, if the consistency increased, the press could jam. To counteract these tendencies it was necessary to build a very heavy press, frequently with an expensive variable speed drive.

In contrast, it was found that the interruptions in the flighting of the Anderson screw would provide cushion within the press. If consistency went down, compression was still effective. A plug of sufficiently solid material had to build up at each interruption before solids could progress towards the discharge. This self-correcting performance prevents wet material from purging at the cake discharge. It is achieved without varying the speed of the screw.

The economic advantages of these characteristics led to interrupted screw presses being used to dewater fibrous materials that are neither slippery nor slimy. Examples would be alfalfa, cornhusk, and, more recently, paper mill fibers.

After the 1900 patent, a major improvement was made with the addition of resistor teeth. Fitted into the gaps where there is no flighting, these teeth increase the agitation within the press, further diminishing co-rotation tendencies.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK