Doppler radar
Overview
 
A Doppler radar is a specialized radar
Radar
Radar is an object-detection system which uses radio waves to determine the range, altitude, direction, or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish or antenna transmits pulses of radio...

 that makes use of the Doppler effect
Doppler effect
The Doppler effect , named after Austrian physicist Christian Doppler who proposed it in 1842 in Prague, is the change in frequency of a wave for an observer moving relative to the source of the wave. It is commonly heard when a vehicle sounding a siren or horn approaches, passes, and recedes from...

 to produce velocity data about objects at a distance. It does this by beaming a microwave
Microwave
Microwaves, a subset of radio waves, have wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. This broad definition includes both UHF and EHF , and various sources use different boundaries...

 signal towards a desired target and listening for its reflection, then analyzing how the frequency of the returned signal has been altered by the object's motion. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar.
Encyclopedia
A Doppler radar is a specialized radar
Radar
Radar is an object-detection system which uses radio waves to determine the range, altitude, direction, or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish or antenna transmits pulses of radio...

 that makes use of the Doppler effect
Doppler effect
The Doppler effect , named after Austrian physicist Christian Doppler who proposed it in 1842 in Prague, is the change in frequency of a wave for an observer moving relative to the source of the wave. It is commonly heard when a vehicle sounding a siren or horn approaches, passes, and recedes from...

 to produce velocity data about objects at a distance. It does this by beaming a microwave
Microwave
Microwaves, a subset of radio waves, have wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. This broad definition includes both UHF and EHF , and various sources use different boundaries...

 signal towards a desired target and listening for its reflection, then analyzing how the frequency of the returned signal has been altered by the object's motion. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. Doppler radars are used in aviation
Aviation
Aviation is the design, development, production, operation, and use of aircraft, especially heavier-than-air aircraft. Aviation is derived from avis, the Latin word for bird.-History:...

, sounding satellites, meteorology
Meteorology
Meteorology is the interdisciplinary scientific study of the atmosphere. Studies in the field stretch back millennia, though significant progress in meteorology did not occur until the 18th century. The 19th century saw breakthroughs occur after observing networks developed across several countries...

, police speed guns
Radar gun
A radar speed gun is a small doppler radar unit used to measure the speed of moving objects, including vehicles, pitched baseballs, runners and other moving objects. Radar speed guns may be hand-held, vehicle-mounted or static...

,, radiology
Radiology
Radiology is a medical specialty that employs the use of imaging to both diagnose and treat disease visualized within the human body. Radiologists use an array of imaging technologies to diagnose or treat diseases...

, and bistatic radar
Bistatic radar
Bistatic radar is the name given to a radar system which comprises a transmitter and receiver which are separated by a distance that is comparable to the expected target distance. Conversely, a radar in which the transmitter and receiver are collocated is called a monostatic radar...

 (surface to air missile).

Partly because of its common use by television meteorologists in on-air weather reporting, the specific term "Doppler Radar" has erroneously become popularly synonymous with the type of radar used in meteorology. Most modern weather radar
Weather radar
Weather radar, also called weather surveillance radar and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, estimate its type . Modern weather radars are mostly pulse-Doppler radars, capable of detecting the motion of rain droplets in addition to the...

s use the pulse-doppler
Pulse-doppler radar
Pulse-Doppler is a 4D radar system capable of detecting both target 3D location as well as measuring radial velocity . It uses the Doppler effect to avoid overloading computers and operators as well as to reduce power consumption...

 technique to examine the motion of precipitation
Precipitation (meteorology)
In meteorology, precipitation In meteorology, precipitation In meteorology, precipitation (also known as one of the classes of hydrometeors, which are atmospheric water phenomena is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation...

, but it is only a part of the processing of their data. So, while these radars use a highly specialized form of doppler radar, the term is much broader in its meaning and its applications.

Doppler effect

The Doppler effect
Doppler effect
The Doppler effect , named after Austrian physicist Christian Doppler who proposed it in 1842 in Prague, is the change in frequency of a wave for an observer moving relative to the source of the wave. It is commonly heard when a vehicle sounding a siren or horn approaches, passes, and recedes from...

 (or Doppler shift), named after Austrian physicist Christian Doppler
Christian Doppler
Christian Andreas Doppler was an Austrian mathematician and physicist.-Life and work:Christian Doppler was raised in Salzburg, Austria, the son of a stonemason. Doppler could not work in his father's business because of his generally weak physical condition...

 who proposed it in 1842, is the difference between the observed frequency
Frequency
Frequency is the number of occurrences of a repeating event per unit time. It is also referred to as temporal frequency.The period is the duration of one cycle in a repeating event, so the period is the reciprocal of the frequency...

 and the emitted frequency of a wave for an observer moving relative to the source of the waves. It is commonly heard when a vehicle sounding a siren approaches, passes and recedes from an observer. The received frequency is higher (compared to the emitted frequency) during the approach, it is identical at the instant of passing by, and it is lower during the recession. This variation of frequency also depends on the direction the wave source is moving with respect to the observer; it is maximum when the source is moving directly toward or away from the observer and diminishes with increasing angle between the direction of motion and the direction of the waves, until when the source is moving at right angles to the observer, there is no shift.

An analogy would be pitcher throwing one ball every second in a person's direction (a frequency of 1 ball per second). Assuming that the balls travel at a constant velocity and the pitcher is stationary, the man will catch one ball every second. However, if the pitcher is jogging towards the man, he will catch balls more frequently because the balls will be less spaced out (the frequency increases). The inverse is true if the pitcher is moving away from the man; he will catch balls less frequently because of the pitcher's backward motion (the frequency decreases). If the pitcher were to move at an angle but with the same speed, the variation of the frequency at which the receiver would catch the ball would be less as the distance between the two would change more slowly.
From the point of view of the pitcher, the frequency remains constant (whether he's throwing balls or transmitting microwaves). Since with electromagnetic radiation
Electromagnetic radiation
Electromagnetic radiation is a form of energy that exhibits wave-like behavior as it travels through space...

 like microwaves frequency is inversely proportional to wavelength, the wavelength of the waves is also affected. Thus, the relative difference in velocity between a source and an observer is what gives rise to the doppler effect.

Frequency variation

The formula for radar doppler shift is the same as that for reflection of light by a moving mirror. There is no need to invoke Einstein's theory of special relativity
Special relativity
Special relativity is the physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies".It generalizes Galileo's...

, because all observations are made in the same frame of reference. The result derived with c as the speed of light
Speed of light
The speed of light in vacuum, usually denoted by c, is a physical constant important in many areas of physics. Its value is 299,792,458 metres per second, a figure that is exact since the length of the metre is defined from this constant and the international standard for time...

 and v as the target velocity gives the shifted frequency () as a function of the original frequency () :



The "beat frequency", (Doppler frequency) (), is thus:


Since for most practical applications of radar, , so . We can then write:

Technology

There are four ways of producing the Doppler effect. Radars may be coherent pulsed (CP), pulse-doppler radar
Pulse-doppler radar
Pulse-Doppler is a 4D radar system capable of detecting both target 3D location as well as measuring radial velocity . It uses the Doppler effect to avoid overloading computers and operators as well as to reduce power consumption...

, continuous wave
Continuous wave
A continuous wave or continuous waveform is an electromagnetic wave of constant amplitude and frequency; and in mathematical analysis, of infinite duration. Continuous wave is also the name given to an early method of radio transmission, in which a carrier wave is switched on and off...

 (CW), or frequency modulated (FM). CW doppler radar only provides a velocity output as the received signal from the target is compared in frequency with the original signal. Early doppler radars were CW, but these quickly led to the development of frequency modulated continuous wave (FM-CW) radar, which sweeps the transmitter frequency to encode and determine range.

The CW and FM-CW radars can normally only process one target, which limits their use. With the advent of digital techniques, Pulse-Doppler radar
Pulse-doppler radar
Pulse-Doppler is a 4D radar system capable of detecting both target 3D location as well as measuring radial velocity . It uses the Doppler effect to avoid overloading computers and operators as well as to reduce power consumption...

s (PD) were introduced, and doppler processors for coherent pulse radars were developed at the same time. The advantage of combining doppler processing with pulse radars is to provide accurate velocity information. This velocity is called range-rate. It describes the rate that a target moves toward or away from the radar. A target with no range-rate reflects a frequency near the transmitter frequency and cannot be detected. The classic zero doppler target is one which is on a heading that is tangential to the radar antenna beam. Basically, any target that is heading 90 degrees in relation to the antenna beam cannot be detected by its velocity (only by its conventional reflectivity
Reflectivity
In optics and photometry, reflectivity is the fraction of incident radiation reflected by a surface. In general it must be treated as a directional property that is a function of the reflected direction, the incident direction, and the incident wavelength...

).

History

FM radar was developed during World War II
World War II
World War II, or the Second World War , was a global conflict lasting from 1939 to 1945, involving most of the world's nations—including all of the great powers—eventually forming two opposing military alliances: the Allies and the Axis...

 for the use by United States Navy
United States Navy
The United States Navy is the naval warfare service branch of the United States Armed Forces and one of the seven uniformed services of the United States. The U.S. Navy is the largest in the world; its battle fleet tonnage is greater than that of the next 13 largest navies combined. The U.S...

 aircraft. Most used the UHF
Ultra high frequency
Ultra-High Frequency designates the ITU Radio frequency range of electromagnetic waves between 300 MHz and 3 GHz , also known as the decimetre band or decimetre wave as the wavelengths range from one to ten decimetres...

 spectrum and had a transmit Yagi antenna
Yagi antenna
A Yagi-Uda array, commonly known simply as a Yagi antenna, is a directional antenna consisting of a driven element and additional parasitic elements...

 on the port wing and a receiver yagi antenna on the starboard wing. This allowed bomber
Bomber
A bomber is a military aircraft designed to attack ground and sea targets, by dropping bombs on them, or – in recent years – by launching cruise missiles at them.-Classifications of bombers:...

s to fly an optimum speed when approaching ship targets. Later when magnetrons and microwaves became available, the use of FM radar fell into disuse.

When the digital fast fourier transform
Fast Fourier transform
A fast Fourier transform is an efficient algorithm to compute the discrete Fourier transform and its inverse. "The FFT has been called the most important numerical algorithm of our lifetime ." There are many distinct FFT algorithms involving a wide range of mathematics, from simple...

 became available, it was immediately connected to coherent pulsed radars, where velocity information was extracted. This quickly proved useful in both weather and air traffic control
Air traffic control
Air traffic control is a service provided by ground-based controllers who direct aircraft on the ground and in the air. The primary purpose of ATC systems worldwide is to separate aircraft to prevent collisions, to organize and expedite the flow of traffic, and to provide information and other...

 radars. The velocity information provided another input to the software tracker, and improved computer tracking. Because of the low Pulse Repetition Frequency
Pulse repetition frequency
Pulse repetition frequency or Pulse repetition rate is the number of pulses per time unit . It is a measure or specification mostly used within various technical disciplines Pulse repetition frequency (PRF) or Pulse repetition rate (PRR) is the number of pulses per time unit (e.g. Seconds). It...

 (PRF) of most coherent pulsed radars, which maximizes the coverage in range, the amount of doppler processing is limited. The doppler processor can only process velocities up to ±1/2 the PRF of the radar. This was not a problem for weather radars.

Specialized radars quickly were mechanized when digital techniques became affordable. Pulse-Doppler radar
Pulse-doppler radar
Pulse-Doppler is a 4D radar system capable of detecting both target 3D location as well as measuring radial velocity . It uses the Doppler effect to avoid overloading computers and operators as well as to reduce power consumption...

s combine all the benefits of long range and high velocity capability. Pulse-Doppler radars use a medium to high PRF (on the order of 3 to 30 kHz). This medium PRF allows for the detection of either high speed targets or high resolution velocity measurements. Normally it is one or the other; a radar designed for detecting targets from zero to Mach
Mach number
Mach number is the speed of an object moving through air, or any other fluid substance, divided by the speed of sound as it is in that substance for its particular physical conditions, including those of temperature and pressure...

 2 does not have a high resolution in speed, while a radar designed for high resolution velocity measurements does not have a wide range of speeds. Weather radars are high resolution velocity radars, while air defense radars have a large range of velocity detection, but the accuracy in velocity is in the 10's of knots.

Antenna designs for the CW and FM-CW started out as separate transmit and receive antennas before the advent of affordable microwave designs. In the late 1960s traffic radars began being produced which used a single antenna. This was made possible by the use of circular polarization and a multi-port waveguide section operating at X band. By the late 1970s this changed to linear polarization and the use of ferrite circulator
Circulator
A circulator is a passive non-reciprocal three- or four-port device, in which microwave or radio frequency power entering any port is transmitted to the next port in rotation...

s at both X and K bands. PD radars operate at too high a PRF to use a transmit-receive gas filled switch, and most use solid-state devices to protect the receiver low noise amplifier when the transmitter is fired.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK