Contingent negative variation
Encyclopedia
The contingent negative variation (CNV) was one of the first event-related potential
(ERP) components to be described. The CNV component was first described by Dr. W. Grey Walter and colleagues in an article published in Nature in 1964. The importance of this finding was that it was one of the first studies which showed that consistent patterns of the amplitude of electric responses could be obtained from the large background noise which occurs in electroencephalography
(EEG) recordings and that this activity could be related to a cognitive process such as expectancy.
when a single stimulus is repeated. They also noticed that the amplitude of the electric response returned when a second stimulus was associated with the first stimulus. These effects were strengthened when a behavioral response was required for the second stimulus. In a chronometric paradigm, the first stimulus is called the warning stimulus and the second stimulus, often one that directs the subject to make a behavioral response, is called the imperative stimulus. The foreperiod is the time between the warning and imperative stimuli. The time between the imperative stimulus and the behavioral response is called the reaction time. The CNV, then, is seen in the foreperiod, between the warning and imperative stimulus.
Walter and colleagues also noticed that electric responses to warning stimuli seemed to have three phases: a brief positive component, a brief negative component, and a sustained negative component. They noticed that the brief components varied due to sensory modality, while the sustained component varied with the contingency between the warning and imperative stimuli and the attention of the subject. They labeled this component the “contingent negative variation” because the variation of the negative wave was contingent on the statistical relationship between the warning and imperative stimuli.
In their study, Walter et al. (1964) presented clicks or flashes, singly or in pairs, at intervals between 3-10 sec. The warning stimuli were single clicks or flashes and the imperative stimuli were repetitive clicks or flashes. The modality of the imperative stimuli was opposite that of the warning stimuli. The behavioral response was a button press which terminated the repetitive stimuli.
also affects the amplitude of the CNV. The following examples from various task conditions and studies show that the CNV is changed when the experimental protocol changes the attention needed to perform the tasks. First, when subjects were told that the imperative stimulus would be removed, the CNV was reduced. Second, in one condition subjects were allowed to choose whether they were going to press the button or not. In trials where the subject chose not to respond, there was no CNV. Third, when the subject was specifically told that there would not be repetitive flashes, no CNV was elicited. Fourth, another condition showed that a CNV was elicited in subjects who were told to estimate when the repetitive flashes would come even when no flashes were presented. Fifth, when subjects were asked pay attention and respond quickly, CNV amplitude was increased. The results of these conditions suggest that the CNV is related to attention and expectancy.
In related studies, researchers have also shown that the larger the motoric response needed, the larger the CNV. Studies with subjects that have a lack of sleep tend to show a reduced CNV. This provides further evidence that lack of attention might decrease the CNV amplitude.
(ISI). The most frequent ISI used is between 1.0-1.5 seconds. Trials with an ISI between 0.5-1.5 elicit a robust CNV wave. When the ISI is reduced to 0.125 or 0.25 seconds, the CNV becomes suppressed. On the other hand, trials with an ISI of 4.8 seconds show reduced CNV amplitude.
wave. This wave showed enhanced amplitude in the frontal regions. The second wave preceded the imperative stimulus and was called the E wave, or expectancy wave. A study conducted by Gaillard (1976) provided further evidence that the O wave was frontally distributed and was more strongly affected by auditory stimuli rather than visual stimuli.
A related, important issue has been the question of whether all or part of the CNV corresponds to the readiness potential. The readiness potential is the neural preparation for motoric responses. Both components have a similar scalp distribution with a negative amplitude and are associated with a motor response. In fact, many researchers claimed that the terminal CNV, or E wave, was in fact the readiness potential, or bereitschaftspotential
. This was the general consensus until other work provided evidence that the CNV can be distinguished from the RP. First, the RP is usually lateralized to the contralateral side of the motoric response, while the CNV is usually bilateral. Second, the CNV can occur even when a motor response is not required. Third, a RP occurs without any external stimuli. This shows that the RP occurs for motor responses while the CNV occurs when two stimuli are contingent with each other.
(MEG) to determine the location of the electromagnetic source of the CNV wave. Their experiment suggests that the terminal CNV is located within Brodmann’s area 6 and corresponds to the premotor cortex
.
The work done by Zappoli and colleagues is another example of research completed to determine the generators of the CNV component. Zappoli (2003) studied the ERP patterns, including the CNV, of subjects with brain disorders or brain damage. Zappoli reviews evidence which shows that in certain cases epileptic discharges affect the expectance waves and therefore decrease the CNV amplitude. Zappoli also described research which investigated the CNV characteristics in patients which had lobotomies of frontal regions. The CNV amplitudes were decreased or absent in these patients.
Event-related potential
An event-related potential is any measured brain response that is directly the result of a thought or perception. More formally, it is any stereotyped electrophysiological response to an internal or external stimulus....
(ERP) components to be described. The CNV component was first described by Dr. W. Grey Walter and colleagues in an article published in Nature in 1964. The importance of this finding was that it was one of the first studies which showed that consistent patterns of the amplitude of electric responses could be obtained from the large background noise which occurs in electroencephalography
Electroencephalography
Electroencephalography is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain...
(EEG) recordings and that this activity could be related to a cognitive process such as expectancy.
Main paradigms
Walter and colleagues conducted the experiment in the chronometric paradigm. They had noticed that the electric response became attenuated, or habituatedHabituation
Habituation can be defined as a process or as a procedure. As a process it is defined as a decrease in an elicited behavior resulting from the repeated presentation of an eliciting stimulus...
when a single stimulus is repeated. They also noticed that the amplitude of the electric response returned when a second stimulus was associated with the first stimulus. These effects were strengthened when a behavioral response was required for the second stimulus. In a chronometric paradigm, the first stimulus is called the warning stimulus and the second stimulus, often one that directs the subject to make a behavioral response, is called the imperative stimulus. The foreperiod is the time between the warning and imperative stimuli. The time between the imperative stimulus and the behavioral response is called the reaction time. The CNV, then, is seen in the foreperiod, between the warning and imperative stimulus.
Walter and colleagues also noticed that electric responses to warning stimuli seemed to have three phases: a brief positive component, a brief negative component, and a sustained negative component. They noticed that the brief components varied due to sensory modality, while the sustained component varied with the contingency between the warning and imperative stimuli and the attention of the subject. They labeled this component the “contingent negative variation” because the variation of the negative wave was contingent on the statistical relationship between the warning and imperative stimuli.
In their study, Walter et al. (1964) presented clicks or flashes, singly or in pairs, at intervals between 3-10 sec. The warning stimuli were single clicks or flashes and the imperative stimuli were repetitive clicks or flashes. The modality of the imperative stimuli was opposite that of the warning stimuli. The behavioral response was a button press which terminated the repetitive stimuli.
Component characteristics
Walter et al. (1964) showed that a single click elicits a brief positive peak and a brief negative peak. Repetitive flashes elicit brief positive and negative peaks. If these stimuli are separated by 1 sec the same individual patterns result. After around 50 presentations, these peaks are indistinguishable from noise. On the other hand, when a single click is followed by the repetitive flashes which are terminated by a button press, there is a large gradual negative peak which ends sharply with the button press. This is the contingent negative variation. Another classical study was described by Joseph Tecce in the Psychological Bulletin in 1972. In this review, Tecce summarizes the development, morphology, and locus of appearance of the CNV.Development
Studies have shown that the CNV appears after about 30 trials of paired stimuli, although this number can be reduced when the subject understands the task in advance. Light flashes, clicks, and tones have all been used to elicit the CNV. A response to the imperative stimulus is necessary to elicit a clear CNV. This response could be a physical or mental response. The CNV is elicited when two, linked stimuli are presented. When the imperative stimulus is removed unexpectedly, the CNV attenuates until it is completely suppressed after about 20-50 trials. The CNV is immediately restored if paired with the imperative stimulus again.Morphology
The negative CNV peak rises around 260-470 ms after the warning stimulus. It will rise quickly if the subject is uncertain about when the imperative stimulus will be, and it will rise gradually if the subject is confident about when the imperative stimulus will be. The maximum amplitude is usually around 20 microvolts.Functional sensitivity
There is much research which describes what stimulus characteristics can affect characteristics of the CNV. For example, intensity, modality, duration, stimulus rate, probability, stimulus relevance, and pitch discrimination can affect the CNV component. .Attention and expectancy
AttentionAttention
Attention is the cognitive process of paying attention to one aspect of the environment while ignoring others. Attention is one of the most intensely studied topics within psychology and cognitive neuroscience....
also affects the amplitude of the CNV. The following examples from various task conditions and studies show that the CNV is changed when the experimental protocol changes the attention needed to perform the tasks. First, when subjects were told that the imperative stimulus would be removed, the CNV was reduced. Second, in one condition subjects were allowed to choose whether they were going to press the button or not. In trials where the subject chose not to respond, there was no CNV. Third, when the subject was specifically told that there would not be repetitive flashes, no CNV was elicited. Fourth, another condition showed that a CNV was elicited in subjects who were told to estimate when the repetitive flashes would come even when no flashes were presented. Fifth, when subjects were asked pay attention and respond quickly, CNV amplitude was increased. The results of these conditions suggest that the CNV is related to attention and expectancy.
Probability
When the probability of repetitive flashes is random and the repetitive flashes are removed in about 50% of the trials, the amplitude of the CNV is about half as that of normal.Intensity
Some researchers have shown that the intensity of the stimulus may affect the CNV amplitude. It seems that the CNV component has a higher amplitude for stimuli that have low-intensity, i.e. is difficult to see or hear, as opposed to stimuli that have high-intensity. This could be because the subject must pay more attention to perceive the low-intensity stimulus. If the detection of the imperative task becomes too difficult, then the CNV amplitude is reduced. In other words, attention to the imperative stimulus is important for the development of the CNV and increased task difficulties distract the attention.In related studies, researchers have also shown that the larger the motoric response needed, the larger the CNV. Studies with subjects that have a lack of sleep tend to show a reduced CNV. This provides further evidence that lack of attention might decrease the CNV amplitude.
Interstimulus Interval
The amplitude of the CNV changes when one changes the foreperiod, or interstimulus intervalInterstimulus interval
The interstimulus interval is the temporal interval between the offset of one stimulus to the onset of another. For instance, Max Wertheimer did experiments with two stationary, flashing lights that at some interstimulus intervals appeared to the subject as moving instead of stationary...
(ISI). The most frequent ISI used is between 1.0-1.5 seconds. Trials with an ISI between 0.5-1.5 elicit a robust CNV wave. When the ISI is reduced to 0.125 or 0.25 seconds, the CNV becomes suppressed. On the other hand, trials with an ISI of 4.8 seconds show reduced CNV amplitude.
O-wave and E-wave
Most researchers agree that the CNV component has been associated with information processing and response preparation. The main controversy is whether the CNV is composed of more than one component. After discovery of the CNV, researchers were able to distinguish between two main components of the CNV. Loveless and Sanford (1975) and Weerts and Lang (1973) increased the interstimulus interval to greater than 3 seconds and showed that two components can be visually distinguished from the CNV. The first wave followed the warning stimulus and was called the O wave, or orientingOrienting response
The orienting response, also called orienting reflex, is an organism's immediate response to a change in its environment, when that change is not sudden enough to elicit the startle reflex...
wave. This wave showed enhanced amplitude in the frontal regions. The second wave preceded the imperative stimulus and was called the E wave, or expectancy wave. A study conducted by Gaillard (1976) provided further evidence that the O wave was frontally distributed and was more strongly affected by auditory stimuli rather than visual stimuli.
A related, important issue has been the question of whether all or part of the CNV corresponds to the readiness potential. The readiness potential is the neural preparation for motoric responses. Both components have a similar scalp distribution with a negative amplitude and are associated with a motor response. In fact, many researchers claimed that the terminal CNV, or E wave, was in fact the readiness potential, or bereitschaftspotential
Bereitschaftspotential
In neurology, the Bereitschaftspotential or BP , also called the pre-motor potential or readiness potential , is a measure of activity in the motor cortex of the brain leading up to voluntary muscle movement. The BP is a manifestation of cortical contribution to the pre-motor planning of volitional...
. This was the general consensus until other work provided evidence that the CNV can be distinguished from the RP. First, the RP is usually lateralized to the contralateral side of the motoric response, while the CNV is usually bilateral. Second, the CNV can occur even when a motor response is not required. Third, a RP occurs without any external stimuli. This shows that the RP occurs for motor responses while the CNV occurs when two stimuli are contingent with each other.
Localization
Another important topic in studying the CNV component is localizing the general source of the CNV. For example, Hultin, Rossini, Romani, Högstedt, Tecchio, and Pizzella (1996) used magnetoencephalographyMagnetoencephalography
Magnetoencephalography is a technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using arrays of SQUIDs...
(MEG) to determine the location of the electromagnetic source of the CNV wave. Their experiment suggests that the terminal CNV is located within Brodmann’s area 6 and corresponds to the premotor cortex
Premotor cortex
The premotor cortex is an area of motor cortex lying within the frontal lobe of the brain. It extends 3 mm anterior to the primary motor cortex, near the Sylvian fissure, before narrowing to approximately 1 mm near the medial longitudinal fissure, which serves as the posterior border for...
.
The work done by Zappoli and colleagues is another example of research completed to determine the generators of the CNV component. Zappoli (2003) studied the ERP patterns, including the CNV, of subjects with brain disorders or brain damage. Zappoli reviews evidence which shows that in certain cases epileptic discharges affect the expectance waves and therefore decrease the CNV amplitude. Zappoli also described research which investigated the CNV characteristics in patients which had lobotomies of frontal regions. The CNV amplitudes were decreased or absent in these patients.
Theory
Many theories have been posited to account for cognitive processes underlying the CNV component. Walter and colleagues suggested that CNV amplitude varies directly with subjective probability or expectancy of the imperative stimuli. Other researchers suggested that the CNV amplitude varies with the intention to perform an act. Another theory is that CNV varies with the motivation of the subject to complete the task. Tecce suggests that the CNV is related to both attention and arousal level.See also
- Somatosensory evoked potentialSomatosensory Evoked PotentialSomatosensory Evoked Potentials are a useful, noninvasive means of assessing somatosensory system functioning. By combining SEP recordings at different levels of the somatosensory pathways, it is possible to assess the transmission of the afferent volley from the periphery up to the cortex...
- C1 and P1C1 & P1 (Neuroscience)The C1 and P1 are two human scalp-recorded event-related brain potential components, collected by means of a technique called electroencephalography . The C1 is named so because it was the first component in a series of components found to respond to visual stimuli when it was first discovered...
- Visual N1Visual N1The Visual N1 is a visual evoked potential, a type of event-related electrical potential , that is produced in the brain and recorded on the scalp. The N1 is so named to reflect the polarity and typical timing of the component. The "N" indicates that the polarity of the component is negative with...
- Mismatch negativityMismatch negativityThe mismatch negativity or mismatch field is a component of the event-related potential to an odd stimulus in a sequence of stimuli. It arises from electrical activity in the brain and is studied within the field of cognitive neuroscience and psychology. It can occur in any sensory system, but...
- N100
- N200N200 (neuroscience)The N200, or N2, is an event-related potential component. An ERP can be monitored using a non-invasive electroencephalography cap that is fitted over the scalp on human subjects...
- N2pcN2pcN2pc refers to an ERP component linked to selective attention. The N2pc appears over visual cortex contralateral to the location in space to which subjects are attending; if subjects pay attention to the left side of the visual field, the N2pc appears in the right hemisphere of the brain, and...
- N170N170The N170 is a component of the event-related potential that reflects the neural processing of faces.When potentials evoked by images of faces are compared to those elicited by other visual stimuli, the former show increased negativity 130-200 ms after stimulus presentation...
- P200P200In neuroscience, the visual P200 or P2 is a waveform component or feature of the event-related potential measured at the human scalp. Like other potential changes measurable from the scalp, this effect is believed to reflect the post-synaptic activity of a specific neural process...
- N400
- P300 (neuroscience)P300 (neuroscience)The P300 wave is an event related potential elicited by infrequent, task-relevant stimuli. It is considered to be an endogenous potential as its occurrence links not to the physical attributes of a stimulus but to a person's reaction to the stimulus. More specifically, the P300 is thought to...
- P3aP3aThe P3a, or novelty P3, is a component of time-locked signals known as event-related potentials . The P3a is a positive-going scalp-recorded brain potential that has a maximum amplitude over frontal/central electrode sites with a peak latency falling in the range of 250-280 ms...
- P3bP3bThe P3b is a subcomponent of the P300, an event-related potential component that can be observed in human scalp recordings of brain electrical activity...
- Late Positive ComponentLate Positive ComponentThe LPC is a positive-going event-related brain potential component that has been important in studies of explicit recognition memory...
- Difference due to MemoryDifference due to MemoryDifference due to Memory indexes differences in neural activity during the study phase of an experiment for items that subsequently are remembered compared to items that are later forgotten...
- Error-related negativityError-related negativityError-related negativity , , is a component of an event-related potential . ERPs are electrical activity in the brain as measured through electroencephalography and time-locked to an external event...
- BereitschaftspotentialBereitschaftspotentialIn neurology, the Bereitschaftspotential or BP , also called the pre-motor potential or readiness potential , is a measure of activity in the motor cortex of the brain leading up to voluntary muscle movement. The BP is a manifestation of cortical contribution to the pre-motor planning of volitional...
- Lateralized readiness potentialLateralized readiness potentialIn neuroscience, the lateralized readiness potential is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical...
- Early left anterior negativityEarly left anterior negativityThe early left anterior negativity is an event-related potential in electroencephalography , or component of brain activity that occurs in response to a certain kind of stimulus...
- P600P600The P600 is an event-related potential , or peak in electrical brain activity measured by electroencephalography . It is a language-relevant ERP and is thought to be elicited by hearing or reading grammatical errors and other syntactic anomalies...