
Cantellated 8-simplex
    
    Encyclopedia
    | 8-simplex | Cantellated 8-simplex | Bicantellated 8-simplex | Tricantellated 8-simplex | 
| Birectified 8-simplex | Cantitruncated 8-simplex | Bicantitruncated 8-simplex | Tricantitruncated 8-simplex | 
| Orthogonal projections in A8 Coxeter plane | |||
|---|---|---|---|
In eight-dimensional geometry
Geometry
Geometry  arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....
, a cantellated 8-simplex is a convex uniform 8-polytope, being a cantellation of the regular 8-simplex.
There are six unique cantellations for the 8-simplex, including permutations of truncation.
Cantellated 8-simplex
| Cantellated 8-simplex | |
|---|---|
| Type | uniform polyzetton | 
| Schläfli symbol | t0,2{3,3,3,3,3,3,3} | 
| Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram  is a graph with numerically labeled edges  representing the spatial relations between a collection of mirrors... | |
| 7-faces | |
| 6-faces | |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | 1764 | 
| Vertices | 252 | 
| Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... | 6-simplex prism | 
| Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a  formal description in terms of mirror symmetries.   Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... | A8, [37], order 362880 | 
| Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... | 
Coordinates
The Cartesian coordinates of the vertices of the cantellated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 9-orthoplex.Bicantellated 8-simplex
| Bicantellated 8-simplex | |
|---|---|
| Type | uniform polyzetton | 
| Schläfli symbol | t1,3{3,3,3,3,3,3,3} | 
| Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram  is a graph with numerically labeled edges  representing the spatial relations between a collection of mirrors... | |
| 7-faces | |
| 6-faces | |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | 5292 | 
| Vertices | 756 | 
| Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... | |
| Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a  formal description in terms of mirror symmetries.   Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... | A8, [37], order 362880 | 
| Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... | 
Coordinates
The Cartesian coordinates of the vertices of the bicantellated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 9-orthoplex.Tricantellated 8-simplex
| tricantellated 8-simplex | |
|---|---|
| Type | uniform polyzetton | 
| Schläfli symbol | t2,4{3,3,3,3,3,3,3} | 
| Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram  is a graph with numerically labeled edges  representing the spatial relations between a collection of mirrors... | |
| 7-faces | |
| 6-faces | |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | 8820 | 
| Vertices | 1260 | 
| Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... | |
| Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a  formal description in terms of mirror symmetries.   Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... | A8, [37], order 362880 | 
| Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... | 
Coordinates
The Cartesian coordinates of the vertices of the tricantellated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2,2). This construction is based on facets of the tricantellated 9-orthoplex.Cantitruncated 8-simplex
| Cantitruncated 8-simplex | |
|---|---|
| Type | uniform polyzetton | 
| Schläfli symbol | t0,1,2{3,3,3,3,3,3,3} | 
| Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram  is a graph with numerically labeled edges  representing the spatial relations between a collection of mirrors... | |
| 7-faces | |
| 6-faces | |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | |
| Vertices | |
| Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... | |
| Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a  formal description in terms of mirror symmetries.   Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... | A8, [37], order 362880 | 
| Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... | 
Coordinates
The Cartesian coordinates of the vertices of the cantitruncated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,2,3). This construction is based on facets of the bicantitruncated 9-orthoplex.Bicantitruncated 8-simplex
| Bicantitruncated 8-simplex | |
|---|---|
| Type | uniform polyzetton | 
| Schläfli symbol | t1,2,3{3,3,3,3,3,3,3} | 
| Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram  is a graph with numerically labeled edges  representing the spatial relations between a collection of mirrors... | |
| 7-faces | |
| 6-faces | |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | |
| Vertices | |
| Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... | |
| Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a  formal description in terms of mirror symmetries.   Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... | A8, [37], order 362880 | 
| Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... | 
Coordinates
The Cartesian coordinates of the vertices of the bicantitruncated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 9-orthoplex.Tricantitruncated 8-simplex
| Tricantitruncated 8-simplex | |
|---|---|
| Type | uniform polyzetton | 
| Schläfli symbol | t2,3,4{3,3,3,3,3,3,3} | 
| Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram  is a graph with numerically labeled edges  representing the spatial relations between a collection of mirrors... | |
| 7-faces | |
| 6-faces | |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | |
| Vertices | |
| Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... | |
| Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a  formal description in terms of mirror symmetries.   Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... | A8, [37], order 362880 | 
| Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... | 
- Great trirhombated enneazetton (acronym: gatrene) (Jonathan Bowers)


