Busemann–Petty problem
Encyclopedia
In the mathematical field of convex geometry
Convex geometry
Convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space.Convex sets occur naturally in many areas of mathematics: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming,...

, the Busemann–Petty problem, introduced by , asks whether it is true that a symmetric convex body
Convex body
In mathematics, a convex body in n-dimensional Euclidean space Rn is a compact convex set with non-empty interior.A convex body K is called symmetric if it is centrally symmetric with respect to the origin, i.e. a point x lies in K if and only if its antipode, −x, also lies in K...

 with larger central hyperplane sections has larger volume. More precisely, if K, T are symmetric convex bodies in Rn such that


for every hyperplane A passing through the origin, is it true that Voln K ≤ Voln T?

Busemann and Petty showed that the answer is positive if K is a ball. In general, the answer is positive in dimensions at most 4, and negative in dimensions at least 5.

History

showed that the Busemann–Petty problem has a negative solution in dimensions at least 12, and this bound was reduced to dimensions at least 5 by several other authors. pointed out a particularly simple counterexample: all sections of the unit volume cube have measure at most √2, while in dimensions at least 10 all central sections of the unit volume ball have measure at least √2. introduced intersection bodies, and showed that the Busemann-Petty problem has a positive solution in a given dimension if and only if every symmetric convex body is an intersection body. An intersection body is a star body whose radial function in a given direction u is the volume of the hyperplane section u ∩ K for some fixed star body K.
used Lutwak's result to show that the Busemann–Petty problem has a positive solution if the dimension is 3. claimed incorrectly that the unit cube in R4 is not an intersection body, which would have implied that the Busemann–Petty problem has a negative solution if the dimension is at least 4. However showed that a centrally symmetric star-shaped body is an intersection body if and only if the function 1/||x|| is a positive definite distribution, where ||x|| is the homogeneous function of degree 1 that is 1 on the boundary of the body, and used this to show that the unit balls l, 1 < p ≤ ∞ in n-dimensional space with the lp norm are intersection bodies for n = 4 but are not intersection bodies for n ≥ 5, showing that Zhang's result was incorrect. then showed that the Busemann–Petty problem has a positive solution in dimension 4 (giving an unusual example of two papers by the same author in the same leading journal claiming opposite solutions to a problem).
gave a uniform solution for all dimensions.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK