Bioplastic
Overview
 

Bioplastics are a form of plastic
Plastic
A plastic material is any of a wide range of synthetic or semi-synthetic organic solids used in the manufacture of industrial products. Plastics are typically polymers of high molecular mass, and may contain other substances to improve performance and/or reduce production costs...

s derived from renewable biomass
Biomass
Biomass, as a renewable energy source, is biological material from living, or recently living organisms. As an energy source, biomass can either be used directly, or converted into other energy products such as biofuel....

 sources, such as vegetable fats and oils
Vegetable fats and oils
Vegetable fats and oils are lipid materials derived from plants. Physically, oils are liquid at room temperature, and fats are solid. Chemically, both fats and oils are composed of triglycerides, as contrasted with waxes which lack glycerin in their structure...

, corn starch, pea
Pea
A pea is most commonly the small spherical seed or the seed-pod of the pod fruit Pisum sativum. Each pod contains several peas. Peapods are botanically a fruit, since they contain seeds developed from the ovary of a flower. However, peas are considered to be a vegetable in cooking...

 starch
Starch
Starch or amylum is a carbohydrate consisting of a large number of glucose units joined together by glycosidic bonds. This polysaccharide is produced by all green plants as an energy store...

, or microbiota
Microbiota
Microbiota is a monotypic] genus of evergreen coniferous shrub in the cypress family Cupressaceae, containing only one species, Microbiota decussata...

, rather than fossil-fuel plastics which are derived from petroleum
Petroleum
Petroleum or crude oil is a naturally occurring, flammable liquid consisting of a complex mixture of hydrocarbons of various molecular weights and other liquid organic compounds, that are found in geologic formations beneath the Earth's surface. Petroleum is recovered mostly through oil drilling...

. Some, but not all, bioplastics are designed to biodegrade
Biodegradation
Biodegradation or biotic degradation or biotic decomposition is the chemical dissolution of materials by bacteria or other biological means...

.
Biodegradable bioplastics are used for disposable items, such as packaging and catering items (crockery, cutlery, pots, bowls, straws). Biodegradable bioplastics are also often used for organic waste bags, where they can be compost
Compost
Compost is organic matter that has been decomposed and recycled as a fertilizer and soil amendment. Compost is a key ingredient in organic farming. At its most essential, the process of composting requires simply piling up waste outdoors and waiting for the materials to break down from anywhere...

ed together with the food or green waste.
Encyclopedia

Bioplastics are a form of plastic
Plastic
A plastic material is any of a wide range of synthetic or semi-synthetic organic solids used in the manufacture of industrial products. Plastics are typically polymers of high molecular mass, and may contain other substances to improve performance and/or reduce production costs...

s derived from renewable biomass
Biomass
Biomass, as a renewable energy source, is biological material from living, or recently living organisms. As an energy source, biomass can either be used directly, or converted into other energy products such as biofuel....

 sources, such as vegetable fats and oils
Vegetable fats and oils
Vegetable fats and oils are lipid materials derived from plants. Physically, oils are liquid at room temperature, and fats are solid. Chemically, both fats and oils are composed of triglycerides, as contrasted with waxes which lack glycerin in their structure...

, corn starch, pea
Pea
A pea is most commonly the small spherical seed or the seed-pod of the pod fruit Pisum sativum. Each pod contains several peas. Peapods are botanically a fruit, since they contain seeds developed from the ovary of a flower. However, peas are considered to be a vegetable in cooking...

 starch
Starch
Starch or amylum is a carbohydrate consisting of a large number of glucose units joined together by glycosidic bonds. This polysaccharide is produced by all green plants as an energy store...

, or microbiota
Microbiota
Microbiota is a monotypic] genus of evergreen coniferous shrub in the cypress family Cupressaceae, containing only one species, Microbiota decussata...

, rather than fossil-fuel plastics which are derived from petroleum
Petroleum
Petroleum or crude oil is a naturally occurring, flammable liquid consisting of a complex mixture of hydrocarbons of various molecular weights and other liquid organic compounds, that are found in geologic formations beneath the Earth's surface. Petroleum is recovered mostly through oil drilling...

. Some, but not all, bioplastics are designed to biodegrade
Biodegradation
Biodegradation or biotic degradation or biotic decomposition is the chemical dissolution of materials by bacteria or other biological means...

.

Applications

Biodegradable bioplastics are used for disposable items, such as packaging and catering items (crockery, cutlery, pots, bowls, straws). Biodegradable bioplastics are also often used for organic waste bags, where they can be compost
Compost
Compost is organic matter that has been decomposed and recycled as a fertilizer and soil amendment. Compost is a key ingredient in organic farming. At its most essential, the process of composting requires simply piling up waste outdoors and waiting for the materials to break down from anywhere...

ed together with the food or green waste. Some trays and containers for fruit, vegetables, eggs and meat, bottles for soft drinks and dairy products and blister foils for fruit and vegetables are manufactured from bioplastics.

Nondisposable applications include mobile phone casings, carpet fibres, and car interiors, fuel line and plastic pipe applications, and new electroactive bioplastics are being developed that can be used to carry electrical current
Organic electronics
Organic electronics, plastic electronics or polymer electronics, is a branch of electronics dealing with conductive polymers, plastics, or small molecules. It is called 'organic' electronics because the polymers and small molecules are carbon-based...

. In these areas, the goal is not biodegradability, but to create items from sustainable resources.

Starch-based plastics

Constituting about 50 percent of the bioplastics market, thermoplastic
Thermoplastic
Thermoplastic, also known as a thermosoftening plastic, is a polymer that turns to a liquid when heated and freezes to a very glassy state when cooled sufficiently...

 starch, such as Plastarch Material
Plastarch material
Plastarch Material is a biodegradable, thermoplastic resin. It is composed of starch combined with several other biodegradable materials. The starch is modified in order to obtain heat-resistant properties, making PSM one of few bioplastics capable of withstanding high temperatures...

, currently represents the most important and widely used bioplastic. Pure starch possesses the characteristic of being able to absorb humidity
Humidity
Humidity is a term for the amount of water vapor in the air, and can refer to any one of several measurements of humidity. Formally, humid air is not "moist air" but a mixture of water vapor and other constituents of air, and humidity is defined in terms of the water content of this mixture,...

, and is thus being used for the production of drug capsules in the pharmaceutical sector. Flexibiliser and plasticiser such as sorbitol
Sorbitol
Sorbitol, also known as glucitol, Sorbogem® and Sorbo®, is a sugar alcohol that the human body metabolizes slowly. It can be obtained by reduction of glucose, changing the aldehyde group to a hydroxyl group. Sorbitol is found in apples, pears, peaches, and prunes...

 and glycerine are added so the starch can also be processed thermo-plastically. By varying the amounts of these additives, the characteristic of the material can be tailored to specific needs (also called "thermo-plastical starch"). Simple starch plastic can be made at home.

Industrially, starch based bioplastics are often blended with biodegradable polyesters. These blends are mainly starch/polycaprolactone or starch/Ecoflex (polybutylene adipate-co-terephthalate produced by BASF ). These blends remain compostables. Other producers, such as Roquette, have
developed another strategy based on starch/polyeolefine blends. These blends are no longer biodegradables, but display a lower carbon footprint compared to the corresponding petroleum based plastics .

Cellulose-based plastics

Cellulose
Cellulose
Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to over ten thousand β linked D-glucose units....

 bioplastics are mainly the cellulose esters, (including cellulose acetate
Cellulose acetate
Cellulose acetate , first prepared in 1865, is the acetate ester of cellulose. Cellulose acetate is used as a film base in photography, as a component in some adhesives, and as a frame material for eyeglasses; it is also used as a synthetic fiber and in the manufacture of cigarette filters and...

 and nitrocellulose
Nitrocellulose
Nitrocellulose is a highly flammable compound formed by nitrating cellulose through exposure to nitric acid or another powerful nitrating agent. When used as a propellant or low-order explosive, it is also known as guncotton...

) and their derivatives, including celluloid
Celluloid
Celluloid is the name of a class of compounds created from nitrocellulose and camphor, plus dyes and other agents. Generally regarded to be the first thermoplastic, it was first created as Parkesine in 1862 and as Xylonite in 1869, before being registered as Celluloid in 1870. Celluloid is...

.

Some aliphatic polyesters

The aliphatic biopolyester
Polyester
Polyester is a category of polymers which contain the ester functional group in their main chain. Although there are many polyesters, the term "polyester" as a specific material most commonly refers to polyethylene terephthalate...

s are mainly polyhydroxyalkanoates (PHAs) like the poly-3-hydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and polyhydroxyhexanoate PHH.

Polylactic acid (PLA) plastics

Polylactic acid
Polylactic acid
Poly or polylactide is a thermoplastic aliphatic polyester derived from renewable resources, such as corn starch , tapioca products or sugarcanes...

 (PLA) is a transparent plastic produced from cane sugar or glucose
Glucose
Glucose is a simple sugar and an important carbohydrate in biology. Cells use it as the primary source of energy and a metabolic intermediate...

. It not only resembles conventional petrochemical mass plastics (like PE
Polyethylene
Polyethylene or polythene is the most widely used plastic, with an annual production of approximately 80 million metric tons...

 or PP
Polypropylene
Polypropylene , also known as polypropene, is a thermoplastic polymer used in a wide variety of applications including packaging, textiles , stationery, plastic parts and reusable containers of various types, laboratory equipment, loudspeakers, automotive components, and polymer banknotes...

) in its characteristics, but it can also be processed easily on standard equipment that already exists for the production of conventional plastics. PLA and PLA blends generally come in the form of granulates with various properties, and are used in the plastic processing industry for the production of foil, moulds
Molding (process)
Molding or moulding is the process of manufacturing by shaping pliable raw material using a rigid frame or model called a pattern....

, cups and bottles.

Poly-3-hydroxybutyrate (PHB)

The biopolymer
Biopolymer
Biopolymers are polymers produced by living organisms. Since they are polymers, Biopolymers contain monomeric units that are covalently bonded to form larger structures. There are three main classes of biopolymers based on the differing monomeric units used and the structure of the biopolymer formed...

 poly-3-hydroxybutyrate (PHB) is a polyester
Polyester
Polyester is a category of polymers which contain the ester functional group in their main chain. Although there are many polyesters, the term "polyester" as a specific material most commonly refers to polyethylene terephthalate...

 produced by certain bacteria processing glucose, corn starch or wastewater . Its characteristics are similar to those of the petroplastic polypropylene
Polypropylene
Polypropylene , also known as polypropene, is a thermoplastic polymer used in a wide variety of applications including packaging, textiles , stationery, plastic parts and reusable containers of various types, laboratory equipment, loudspeakers, automotive components, and polymer banknotes...

. The South America
South America
South America is a continent situated in the Western Hemisphere, mostly in the Southern Hemisphere, with a relatively small portion in the Northern Hemisphere. The continent is also considered a subcontinent of the Americas. It is bordered on the west by the Pacific Ocean and on the north and east...

n sugar
Sugar
Sugar is a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose, characterized by a sweet flavor.Sucrose in its refined form primarily comes from sugar cane and sugar beet...

 industry, for example, has decided to expand PHB production to an industrial scale. PHB is distinguished primarily by its physical characteristics. It produces transparent film at a melting point higher than 130 degrees Celsius, and is biodegradable without residue.

Polyamide 11 (PA 11)

PA 11
Polyamide 11
Polyamide 11 or Nylon 11 is a polyamide bioplastic derived from vegetable oil. It is produced by Arkema under the tradename Rilsan from castor beans. PA 11 is not biodegradable....

 is a biopolymer
Biopolymer
Biopolymers are polymers produced by living organisms. Since they are polymers, Biopolymers contain monomeric units that are covalently bonded to form larger structures. There are three main classes of biopolymers based on the differing monomeric units used and the structure of the biopolymer formed...

 derived from natural oil. It is also known under the tradename Rilsan B, commercialized by Arkema. PA 11 belongs to the technical polymers family and is not biodegradable. Its properties are similar to those of PA 12, although emissions of greenhouse gases and consumption of nonrenewable resources are reduced during its production. Its thermal resistance is also superior to that of PA 12. It is used in high-performance applications like automotive fuel lines, pneumatic airbrake tubing, electrical cable antitermite sheathing, flexible oil and gas pipes, control fluid umbilicals, sports shoes, electronic device components, and catheters.

Bio-derived polyethylene

The basic building block (monomer
Monomer
A monomer is an atom or a small molecule that may bind chemically to other monomers to form a polymer; the term "monomeric protein" may also be used to describe one of the proteins making up a multiprotein complex...

) of polyethylene
Polyethylene
Polyethylene or polythene is the most widely used plastic, with an annual production of approximately 80 million metric tons...

 is ethylene. This is just one small chemical step from ethanol, which can be produced by fermentation of agricultural feedstocks such as sugar cane or corn. Bio-derived polyethylene is chemically and physically identical to traditional polyethylene - it does not biodegrade but can be recycled. It can also considerably reduce greenhouse gas emissions. Brazilian chemicals group Braskem claims that using its route from sugar cane ethanol to produce one tonne of polyethylene captures (removes from the environment) 2.5 tonnes of carbon dioxide while the traditional petrochemical route results in emissions of close to 3.5 tonnes.

Braskem plans to introduce commercial quantities of its first bio-derived high density polyethylene, used in a packaging such as bottles and tubs, in 2010 and has developed a technology to produce bio-derived butene, required to make the linear low density polethylene types used in film production.

Genetically modified bioplastics

Genetic modification (GM) is also a challenge for the bioplastics industry. None of the currently available bioplastics - which can be considered first generation products - require the use of GM crops, although GM corn is the standard feedstock.

Looking further ahead, some of the second generation bioplastics manufacturing technologies under development employ the "plant factory" model, using genetically modified crops or genetically modified bacteria to optimise efficiency.

Environmental impact

The production and use of bioplastics is generally regarded as a more sustainable activity
Sustainability
Sustainability is the capacity to endure. For humans, sustainability is the long-term maintenance of well being, which has environmental, economic, and social dimensions, and encompasses the concept of union, an interdependent relationship and mutual responsible position with all living and non...

 when compared with plastic production from petroleum (petroplastic), because it relies less on fossil fuel
Fossil fuel
Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years...

 as a carbon source and also introduces fewer, net-new greenhouse emission
Greenhouse gas
A greenhouse gas is a gas in an atmosphere that absorbs and emits radiation within the thermal infrared range. This process is the fundamental cause of the greenhouse effect. The primary greenhouse gases in the Earth's atmosphere are water vapor, carbon dioxide, methane, nitrous oxide, and ozone...

s if it biodegrades. They significantly reduce hazardous waste caused by oil-derived plastics, which remain solid for hundreds of years, and open a new era in packing technology and industry.

However, manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. This comes in the form of energy required to power farm machinery and irrigate growing crops, to produce fertilisers and pesticides, to transport crops and crop products to processing plants, to process raw materials, and ultimately to produce the bioplastic, although renewable energy can be used to obtain petroleum independence.

Italian bioplastic manufacturer Novamont states in its own environmental audit that producing one kilogram of its starch-based product uses 500g of petroleum and consumes almost 80% of the energy required to produce a traditional polyethylene polymer. Environmental data from NatureWorks, the only commercial manufacturer of PLA (polylactic acid
Polylactic acid
Poly or polylactide is a thermoplastic aliphatic polyester derived from renewable resources, such as corn starch , tapioca products or sugarcanes...

) bioplastic, says that making its plastic material delivers a fossil fuel saving of between 25 and 68 per cent compared with polyethylene, in part due to its purchasing of renewable energy
Renewable energy
Renewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable . About 16% of global final energy consumption comes from renewables, with 10% coming from traditional biomass, which is mainly used for heating, and 3.4% from...

 certificates for its manufacturing plant.

A detailed study examining the process of manufacturing a number of common packaging items in several traditional plastics and polylactic acid
Polylactic acid
Poly or polylactide is a thermoplastic aliphatic polyester derived from renewable resources, such as corn starch , tapioca products or sugarcanes...

 carried out by Franklin Associates and published by the Athena Institute shows the bioplastic to be less environmentally damaging for some products, but more environmentally damaging for others. This study however does not consider the end-of-life of the products, thus ignores the possible methane emissions that can occur in landfill due to biodegradable plastics.

While production of most bioplastics results in reduced carbon dioxide emissions compared to traditional alternatives, there are some real concerns that the creation of a global bioeconomy
Bioeconomy
Bioeconomy refers to all economic activity derived from scientific and research activity focused on understanding mechanisms and processes at the genetic and molecular levels and its application to industrial process. It is often used interchangeably with biotechonomy.The term is widely used by...

 could contribute to an accelerated rate of deforestation
Deforestation
Deforestation is the removal of a forest or stand of trees where the land is thereafter converted to a nonforest use. Examples of deforestation include conversion of forestland to farms, ranches, or urban use....

 if not managed effectively. There are associated concerns over the impact on water supply and soil erosion.

Other studies showed that bioplastics represent a 42% reduction in carbon footprint
Carbon footprint
A carbon footprint has historically been defined as "the total set of greenhouse gas emissions caused by an organization, event, product or person.". However, calculating a carbon footprint which conforms to this definition is often impracticable due to the large amount of data required, which is...

.

On the other hand, bioplastic can be made from agricultural byproducts and also from used plastic bottles and other containers using microorganisms.

Bioplastics and biodegradation

The terminology used in the bioplastics sector is sometimes misleading. Most in the industry use the term bioplastic to mean a plastic produced from a biological source. One of the oldest plastics, cellulose film, is made from wood cellulose. All (bio- and petroleum-based) plastics are technically biodegradable, meaning they can be degraded by microbes under suitable conditions. However many degrade at such slow rates as to be considered non-biodegradable. Some petrochemical-based plastics are considered biodegradable, and may be used as an additive to improve the performance of many commercial bioplastics. Non-biodegradable bioplastics are referred to as durable. The degree of biodegradation varies with temperature, polymer stability, and available oxygen content. Consequently, most bioplastics will only degrade in the tightly controlled conditions of industrial composting units. In compost piles or simply in the soil/water, most bioplastics will not degrade (e.g. PH), starch-based bioplastics will, however. An internationally agreed standard, EN13432, defines how quickly and to what extent a plastic must be degraded under commercial composting conditions for it to be called biodegradable. This is published by the International Organization for Standardization
International Organization for Standardization
The International Organization for Standardization , widely known as ISO, is an international standard-setting body composed of representatives from various national standards organizations. Founded on February 23, 1947, the organization promulgates worldwide proprietary, industrial and commercial...

 ISO and is recognised in many countries, including all of Europe, Japan and the US. However, it is designed only for the aggressive conditions of commercial composting units. There is no standard applicable to home composting conditions.

The term "biodegradable plastic" has also been used by producers of specially modified petrochemical-based plastics which appear to biodegrade. Biodegradable plastic bag manufacturers that have misrepresented their product's biodegradability may now face legal action in the US state of California for the misleading use of the terms biodegradable or compostable Traditional plastics such as polyethylene
Polyethylene
Polyethylene or polythene is the most widely used plastic, with an annual production of approximately 80 million metric tons...

 are degraded by ultra-violet (UV) light and oxygen. To prevent this process manufacturers add stabilising chemicals. However with the addition of a degradation initiator to the plastic, it is possible to achieve a controlled UV/oxidation disintegration process. This type of plastic may be referred to as degradable plastic or oxy-degradable plastic or photodegradable plastic because the process is not initiated by microbial action. While some degradable plastics manufacturers argue that degraded plastic residue will be attacked by microbes, these degradable materials do not meet the requirements of the EN13432 commercial composting standard. The bioplastics industry has widely criticized oxo-biodegradable plastics, which the industry association says do not meet its requirements. Oxo-biodegradable plastics - known as "oxos" - are conventional petroleum-based products with some additives that initiate degradation. The ASTM standard used by oxo producers is just a guideline. It requires only 60% biodegradation, P-Life is an oxo plastic claiming biodegradability in soil at a temperature of 23 degrees Celsius reaches 66% after 545 days. Dr Baltus of the National Innovation Agency, has said that there is no proven evidence that bio-organisms are really able to consume and biodegrade oxo plastics.

Recycling

There are also concerns that bioplastics will damage existing recycling
Recycling
Recycling is processing used materials into new products to prevent waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollution and water pollution by reducing the need for "conventional" waste disposal, and lower greenhouse...

 projects. Packaging such as HDPE milk bottles and PET
Polyethylene terephthalate
Polyethylene terephthalate , commonly abbreviated PET, PETE, or the obsolete PETP or PET-P, is a thermoplastic polymer resin of the polyester family and is used in synthetic fibers; beverage, food and other liquid containers; thermoforming applications; and engineering resins often in combination...

 water and soft drinks bottles is easily identified and hence setting up a recycling infrastructure has been quite successful in many parts of the world, although only 27% of all plastics actually get recycled. The rest are in landfills and oceans. However, plastics like PET do not mix with PLA, yielding unusable recycled PET if consumers fail to distinguish the two in their sorting. The problem could be overcome by ensuring distinctive bottle types or by investing in suitable sorting technology. However, the first route is unreliable, and the second costly.

Market

Because of the fragmentation in the market and ambiguous definitions it is difficult to describe the total market size for bioplastics, but estimates put global production capacity at 327,000 tonnes. In contrast, global consumption of all flexible packaging is estimated at around 12.3 million tonnes.

COPA (Committee of Agricultural Organisation in the European Union) and COGEGA (General Committee for the Agricultural Cooperation in the European Union) have made an assessment of the potential of bioplastics in different sectors of the European economy:
Catering products: 450,000 tonnes per year
Organic waste bags: 100,000 tonnes per year
Biodegradable mulch foils: 130,000 tonnes per year
Biodegradable foils for diapers 80,000 tonnes per year
Diapers, 100% biodegradable: 240,000 tonnes per year
Foil packaging: 400,000 tonnes per year
Vegetable packaging: 400,000 tonnes per year
Tyre components: 200,000 tonnes per year
Total 2,000,000 tonnes per year


In the years 2000 to 2008, worldwide consumption of biodegradable plastics based on starch, sugar, and cellulose - so far the three most important raw materials - has increased by 600 %. The NNFCC predicted global annual capacity would grow more than six-fold to 2.1 million tonnes by 2013. BCC Research forecasts the global market for biodegradable polymers to grow at a compound average growth rate of more than 17 percent through 2012. Even so, bioplastics will encompass a small niche of the overall plastic market, which is forecast to reach 500 billion pounds (220 million tonnes) globally by 2010.

Cost

With the exception of cellulose
Cellulose
Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to over ten thousand β linked D-glucose units....

, most bioplastic technology is relatively new and is currently not cost competitive with petroplastics. Bioplastics do not yet reach the fossil fuel parity on fossil fuel
Fossil fuel
Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years...

-derived energy for their manufacturing, reducing the cost advantage over petroleum-based plastic. However, in certain, special applications bioplastics are already unbeatable because pure material costs form only a part of the entire product costs. For example, medical implants made of PLA, which dissolve in the body, save patients a second operation. Compostable mulch films for agriculture, already often produced from starch polymers, do not have to be collected after use and can be left on the fields.

Research and development

  • In the early 1950s, Amylomaize
    Amylomaize
    Amylomaize was a term coined by Robert P. Bear of Bear Hybrids Corn Company in Decatur, Illinois to describe his discovery and commercial breeding of a unique cornstarch with high amylose content, also called high amylose starch...

     (>50% amylose content corn) was successfully bred and commercial bioplastics applications started to be explored.
  • In 2004, NEC developed a flame retardant
    Flame retardant
    Flame retardants are chemicals used in thermoplastics, thermosets, textiles and coatings that inhibit or resist the spread of fire. These can be separated into several different classes of chemicals:...

     plastic, polylactic acid
    Polylactic acid
    Poly or polylactide is a thermoplastic aliphatic polyester derived from renewable resources, such as corn starch , tapioca products or sugarcanes...

    , without using toxic chemicals such as halogens and phosphorus
    Phosphorus
    Phosphorus is the chemical element that has the symbol P and atomic number 15. A multivalent nonmetal of the nitrogen group, phosphorus as a mineral is almost always present in its maximally oxidized state, as inorganic phosphate rocks...

     compounds.
  • In 2005, Fujitsu
    Fujitsu
    is a Japanese multinational information technology equipment and services company headquartered in Tokyo, Japan. It is the world's third-largest IT services provider measured by revenues....

     became one of the first technology companies to make personal computer cases from bioplastics, which are featured in their FMV-BIBLO NB80K line.
  • In 2007 Braskem
    Braskem
    Braskem is a Brazilian petrochemical company headquartered in São Paulo. The company is the largest petrochemical in the Americas by production capacity and the fifth largest in the world...

     of Brazil announced it had developed a route to manufacture high density polyethylene (HDPE) using ethylene derived from sugar cane.
  • In 2008, a University of Warwick
    University of Warwick
    The University of Warwick is a public research university located in Coventry, United Kingdom...

     team created a soap-free emulsion polymerization process which makes colloid
    Colloid
    A colloid is a substance microscopically dispersed evenly throughout another substance.A colloidal system consists of two separate phases: a dispersed phase and a continuous phase . A colloidal system may be solid, liquid, or gaseous.Many familiar substances are colloids, as shown in the chart below...

     particles of polymer dispersed in water, and in a one step process adds nanometre sized silica-based particles to the mix. The newly developed technology might be most applicable to multi-layered biodegradable packaging, which could gain more robustness and water barrier characteristics through the addition of a nano-particle coating
    Coating
    Coating is a covering that is applied to the surface of an object, usually referred to as the substrate. In many cases coatings are applied to improve surface properties of the substrate, such as appearance, adhesion, wetability, corrosion resistance, wear resistance, and scratch resistance...

    .


Testing procedures

Biodegradability - EN 13432, ASTM D6400

The EN 13432 industrial standard is arguably the most international in scope and compliance with this standard is required to claim that a product is compostable in the European marketplace. In summary, it requires biodegradation of 90% of the materials in a lab within 180 days. The ASTM 6400 standard is the regulatory framework for the United States and sets a less stringent threshold of 60% biodegradation within 180 days, again within commercial composting conditions.

Many starch
Starch
Starch or amylum is a carbohydrate consisting of a large number of glucose units joined together by glycosidic bonds. This polysaccharide is produced by all green plants as an energy store...

 based plastics, PLA based plastics and certain aliphatic-aromatic co-polyester
Polyester
Polyester is a category of polymers which contain the ester functional group in their main chain. Although there are many polyesters, the term "polyester" as a specific material most commonly refers to polyethylene terephthalate...

 compounds such as succinates and adipates, have obtained these certificates. Additivated plastics sold as photodegradable or Oxo Biodegradable
Oxo Biodegradable
Oxo Biodegradable plastic is polyolefin plastic to which has been added amounts of metal salts. These catalyze the natural degradation process to speed it up so that the OXO plastic will degrade resulting in microfragments of plastic and metals which will remain in the environment but will not...

 do not comply with these standards in their current form.

Biobased - ASTM D6866

The ASTM D6866 method has been developed to certify the biologically derived content of bioplastics. Cosmic rays colliding with the atmosphere mean that some of the carbon is the radioactive isotope carbon-14
Carbon-14
Carbon-14, 14C, or radiocarbon, is a radioactive isotope of carbon with a nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues , to date archaeological, geological, and hydrogeological...

. CO2 from the atmosphere is used by plants in photosynthesis
Photosynthesis
Photosynthesis is a chemical process that converts carbon dioxide into organic compounds, especially sugars, using the energy from sunlight. Photosynthesis occurs in plants, algae, and many species of bacteria, but not in archaea. Photosynthetic organisms are called photoautotrophs, since they can...

, so new plant material will contain both carbon-14 and carbon-12
Carbon-12
Carbon-12 is the more abundant of the two stable isotopes of the element carbon, accounting for 98.89% of carbon; it contains 6 protons, 6 neutrons, and 6 electrons....

. Under the right conditions, and over geological timescales, the remains of living organisms can be transformed into fossil fuels. After ~100,000 years all the carbon-14 present in the original organic material will have undergone radioactive decay leaving only carbon-12. A product made from biomass
Biomass
Biomass, as a renewable energy source, is biological material from living, or recently living organisms. As an energy source, biomass can either be used directly, or converted into other energy products such as biofuel....

 will have a relatively high level of carbon-14, while a product made from petrochemicals will have no carbon-14.The percentage of renewable carbon in a material (solid or liquid) can be measured with an accelerator mass spectrometer.

There is an important difference between biodegradability and biobased content. A bioplastic such as high density polyethylene (HDPE) can be 100% biobased (i.e. contain 100% renewable carbon), yet be non-biodegradable. These bioplastics such HDPE play nonetheless an important role in greenhouse gas abatement, particularly when they are combusted for energy production. The biobased component of these bioplastics is considered carbon-neutral since their origin is from biomass.

Anaerobic - ASTM D5511-02 and ASTM D5526

The ASTM D5511-02 and ASTM D5526 are testing methods that comply with international standards such as the ISO DIS 15985.

See also

  • Alkane
    Alkane
    Alkanes are chemical compounds that consist only of hydrogen and carbon atoms and are bonded exclusively by single bonds without any cycles...

  • Angewandte Chemie
    Angewandte Chemie
    Angewandte Chemie is a weekly peer-reviewed scientific journal that covers all aspects of chemistry. Its impact factor was 12.730 in 2010, the highest value for a chemistry-specific journal that publishes original research...

  • Biofuel
    Biofuel
    Biofuel is a type of fuel whose energy is derived from biological carbon fixation. Biofuels include fuels derived from biomass conversion, as well as solid biomass, liquid fuels and various biogases...

  • Biopolymer
    Biopolymer
    Biopolymers are polymers produced by living organisms. Since they are polymers, Biopolymers contain monomeric units that are covalently bonded to form larger structures. There are three main classes of biopolymers based on the differing monomeric units used and the structure of the biopolymer formed...

  • Biodegradable plastic
    Biodegradable plastic
    Biodegradable plastics are plastics that will decompose in natural aerobic and anaerobic environments. Biodegradation of plastics can be achieved by enabling microorganisms in the environment to metabolize the molecular structure of plastic films to produce an inert humus-like material that is...

  • Cereplast Inc
  • Ingeo
    Ingeo
    Ingeo is the trademark name for NatureWorks LLC's synthetic fiber made from corn.The process to create Ingeo makes use of the carbon stored in plants by photosynthesis. Plant starches are broken down into sugars. The carbon and other elements in these sugars are then used to make a biopolymer...

  • Mirel
    Mirel
    Mirel is a biodegradable bioplastic being commercialized through a joint venture between Metabolix and Archer Daniels Midland Company called Telles.Mirel is being marketed as an alternative to petroleum-based plastics that is both sustainable and eco-friendly...

  • Organic photovoltaics
  • Solegear Bioplastics Inc
    Solegear Bioplastics
    Solegear Bioplastics is an award-winning bioplastics company founded in 2006 and based in Vancouver, British Columbia, Canada. Solegear manufactures 100% natural "high-performance" bioplastic materials under the brand names Polysole and Traverse...



External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK