3-jm symbol
Encyclopedia
In quantum mechanics
Quantum mechanics
Quantum mechanics, also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic...

, the Wigner 3-j symbols, also called 3j or 3-jm symbols, are related to Clebsch–Gordan coefficients through \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} \equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle.

Inverse relation

The inverse relation can be found by noting that j1 - j2 - m3 is an integer number and making the substitution m_3 \rightarrow -m_3 \langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{-j_1+j_2-m_3}\sqrt{2j_3+1} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & -m_3 \end{pmatrix}.

Symmetry properties

The symmetry properties of 3j symbols are more convenient than those of Clebsch–Gordan coefficients. A 3j symbol is invariant under an even permutation of its columns: \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} \begin{pmatrix} j_3 & j_1 & j_2\\ m_3 & m_1 & m_2 \end{pmatrix}. An odd permutation of the columns gives a phase factor: \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_1 & j_3 & j_2\\ m_1 & m_3 & m_2 \end{pmatrix}. Changing the sign of the m quantum numbers also gives a phase: \begin{pmatrix} j_1 & j_2 & j_3\\ -m_1 & -m_2 & -m_3 \end{pmatrix} (-1)^{j_1+j_2+j_3} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix}. Regge symmetries also give \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} \begin{pmatrix} j_1 & \frac{j_2+j_3-m_1}{2} & \frac{j_2+j_3+m_1}{2}\\ j_3-j_2 & \frac{j_2-j_3-m_1}{2}-m_3 & \frac{j_2-j_3+m_1}{2}+m_3 \end{pmatrix}. \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} (-1)^{j_1+j_2+j_3} \begin{pmatrix} \frac{j_2+j_3+m_1}{2} & \frac{j_1+j_3+m_2}{2} & \frac{j_1+j_2+m_3}{2}\\ j_1 - \frac{j_2+j_3-m_1}{2} & j_2 - \frac{j_1+j_3-m_2}{2} & j_3-\frac{j_1+j_2-m_3}{2} \end{pmatrix}.

Selection rules

The Wigner 3j is zero unless all these conditions are satisfied: m_1+m_2+m_3=0\, j_1+j_2 + j_3\text{ is an integer} \, \text{(or an even integer if} \,m_1=m_2=m_3=0)\, |m_i| \le j_i \, |j_1-j_2|\le j_3 \le j_1+j_2. \,

Scalar invariant

The contraction of the product of three rotational states with a 3j symbol, \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} \sum_{m_3=-j_3}^{j_3} |j_1 m_1\rangle |j_2 m_2\rangle |j_3 m_3\rangle \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix}, is invariant under rotations.

Orthogonality relations

(2j+1)\sum_{m_1 m_2} \begin{pmatrix} j_1 & j_2 & j\\ m_1 & m_2 & m \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j'\\ m_1 & m_2 & m' \end{pmatrix}\delta_{j j'}\delta_{m m'}. \sum_{j m} (2j+1) \begin{pmatrix} j_1 & j_2 & j\\ m_1 & m_2 & m \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j\\ m_1' & m_2' & m \end{pmatrix}

Relation to spherical harmonics

The 3jm symbols give the integral of the products of three spherical harmonics
Spherical harmonics
In mathematics, spherical harmonics are the angular portion of a set of solutions to Laplace's equation. Represented in a system of spherical coordinates, Laplace's spherical harmonics Y_\ell^m are a specific set of spherical harmonics that forms an orthogonal system, first introduced by Pierre...

\begin{align} & {} \quad \int Y_{l_1m_1}(\theta,\varphi)Y_{l_2m_2}(\theta,\varphi)Y_{l_3m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\ & = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\[8pt] 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \end{align} with l_1, l_2 and l_3 integers.

Relation to integrals of spin-weighted spherical harmonics

\begin{align} & {} \quad \int d{\mathbf{\hat n}} {}_{s_1} Y_{j_1 m_1}({\mathbf{\hat n}}) {}_{s_2} Y_{j_2m_2}({\mathbf{\hat n}}) {}_{s_3} Y_{j_3m_3}({\mathbf{\hat n}}) \\[8pt] & = \sqrt{\frac{(2j_1+1)(2j_2+1)(2j_3+1)}{4\pi}} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & m_3 \end{pmatrix} \begin{pmatrix} j_1 & j_2 & j_3\\ -s_1 & -s_2 & -s_3 \end{pmatrix} \end{align}

Recursion relations

\begin{align} & {} \quad -\sqrt{(l_3\mp s_3)(l_3\pm s_3+1)} \begin{pmatrix} l_1 & l_2 & l_3\\ s_1 & s_2 & s_3\pm 1 \end{pmatrix} \\ & = \sqrt{(l_1\mp s_1)(l_1\pm s_1+1)} \begin{pmatrix} l_1 & l_2 & l_3\\ s_1 \pm 1 & s_2 & s_3 \end{pmatrix} +\sqrt{(l_2\mp s_2)(l_2\pm s_2+1)} \begin{pmatrix} l_1 & l_2 & l_3\\ s_1 & s_2 \pm 1 & s_3 \end{pmatrix} \end{align}

Asymptotic expressions

For l_1\ll l_2,l_3 a non-zero 3-j symbol has \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \approx (-1)^{l_3+m_3} \frac{ d^{l_1}_{m_1, l_3-l_2}(\theta)}{\sqrt{2l_3+1}} where \cos(\theta) = -2m_3/(2l_3+1) and d^l_{mn} is a Wigner function. Generally a better approximation obeying the Regge symmetry is given by \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \approx (-1)^{l_3+m_3} \frac{ d^{l_1}_{m_1, l_3-l_2}(\theta)}{\sqrt{l_2+l_3+1}} where \cos(\theta) = (m_2-m_3)/(l_2+l_3+1).

Other properties

\sum_m (-1)^{j-m} \begin{pmatrix} j & j & J\\ m & -m & 0 \end{pmatrix} = \sqrt{2j+1}~ \delta_{J0} \frac{1}{2} \int_{-1}^1 P_{l_1}(x)P_{l_2}(x)P_{l}(x) \, dx = \begin{pmatrix} l & l_1 & l_2 \\ 0 & 0 & 0 \end{pmatrix} ^2

See also

NEWLINE
    NEWLINE
  • Clebsch–Gordan coefficients
  • NEWLINE
  • Spherical harmonics
    Spherical harmonics
    In mathematics, spherical harmonics are the angular portion of a set of solutions to Laplace's equation. Represented in a system of spherical coordinates, Laplace's spherical harmonics Y_\ell^m are a specific set of spherical harmonics that forms an orthogonal system, first introduced by Pierre...

  • NEWLINE
  • 6-j symbol
  • NEWLINE
  • 9-j symbol
NEWLINE

External links

(Gives exact answer) (Numerical)NEWLINENEWLINE
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK