Michael A. O'Keefe
Encyclopedia
Michael A. O'Keefe is a physicist who has worked in materials science
and electron microscopy. He is perhaps best known for his production of the seminal computer code for modeling of high-resolution transmission electron microscopy (HRTEM) images; his software was later made available as part of the DeepView package for remote electron microscopy and control. O'Keefe's tutorial on theory and application of high-resolution electron microscope image simulation is available online.
O'Keefe has established methods of quantifying resolution quality, and methods of deriving accurate atom positions from high-resolution images. He used these methods to help establish high-resolution electron microscopy as a precise science; in addition to its more-pedestrian role of pictorial confirmation of nano measurements, he demonstrated HRTEM's value in measurement of nano-properties. The video and associated slides illustrate the role of his work in providing tools for nano-characterization.
O'Keefe designed and developed the one-Ångström
microscope (OÅM) for the National Center for Electron Microscopy
at Lawrence Berkeley National Laboratory
based on an FEI Company
CM300 microscope that he modified extensively to improve coherence and correct three-fold astigmatism. He was successful in breaking the "one-Ångström barrier" to resolution using his combination of hardware and software correction of microscope aberrations. He produced the first HRTEM images to show carbon
atoms separated by less than one Ångström in diamond
(0.89 Å) and silicon
atoms in crystalline silicon (0.78 Å) -- an example of his silicon work appears on a webpage at the Department of Energy. His OÅM was the first HRTEM able to image the smallest metal atoms (lithium
) in lithium battery
materials. Building on his work designing and operating his one-Ångström
microscope (OÅM), O'Keefe produced the design for the LBNL TEAM (transmission electron aspheric microscope) able to resolve atoms in the deep sub-Ångström resolution region (less than 0.5 Å) using a hardware electron-wave phase-corrector (Cs corrector) in combination with a coherence-enhancing electron-beam monochromator.
Materials science
Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates...
and electron microscopy. He is perhaps best known for his production of the seminal computer code for modeling of high-resolution transmission electron microscopy (HRTEM) images; his software was later made available as part of the DeepView package for remote electron microscopy and control. O'Keefe's tutorial on theory and application of high-resolution electron microscope image simulation is available online.
O'Keefe has established methods of quantifying resolution quality, and methods of deriving accurate atom positions from high-resolution images. He used these methods to help establish high-resolution electron microscopy as a precise science; in addition to its more-pedestrian role of pictorial confirmation of nano measurements, he demonstrated HRTEM's value in measurement of nano-properties. The video and associated slides illustrate the role of his work in providing tools for nano-characterization.
O'Keefe designed and developed the one-Ångström
Ångström
The angstrom or ångström, is a unit of length equal to 1/10,000,000,000 of a meter . Its symbol is the Swedish letter Å....
microscope (OÅM) for the National Center for Electron Microscopy
National Center for Electron Microscopy
The National Center for Electron Microscopy is a U.S. Department of Energy national user facility at Lawrence Berkeley National Laboratory in Berkeley, California, for unclassified scientific research using advanced electron microscopy. It is managed and owned by the University of California....
at Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory
The Lawrence Berkeley National Laboratory , is a U.S. Department of Energy national laboratory conducting unclassified scientific research. It is located on the grounds of the University of California, Berkeley, in the Berkeley Hills above the central campus...
based on an FEI Company
FEI Company
FEI Company , founded in 1971, is an American supplier of electron microscopy tools to researchers, developers and manufacturers working on the nanoscale. Headquartered in Hillsboro, Oregon, the company employs 1,770 people worldwide....
CM300 microscope that he modified extensively to improve coherence and correct three-fold astigmatism. He was successful in breaking the "one-Ångström barrier" to resolution using his combination of hardware and software correction of microscope aberrations. He produced the first HRTEM images to show carbon
Carbon
Carbon is the chemical element with symbol C and atomic number 6. As a member of group 14 on the periodic table, it is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds...
atoms separated by less than one Ångström in diamond
Diamond
In mineralogy, diamond is an allotrope of carbon, where the carbon atoms are arranged in a variation of the face-centered cubic crystal structure called a diamond lattice. Diamond is less stable than graphite, but the conversion rate from diamond to graphite is negligible at ambient conditions...
(0.89 Å) and silicon
Silicon
Silicon is a chemical element with the symbol Si and atomic number 14. A tetravalent metalloid, it is less reactive than its chemical analog carbon, the nonmetal directly above it in the periodic table, but more reactive than germanium, the metalloid directly below it in the table...
atoms in crystalline silicon (0.78 Å) -- an example of his silicon work appears on a webpage at the Department of Energy. His OÅM was the first HRTEM able to image the smallest metal atoms (lithium
Lithium
Lithium is a soft, silver-white metal that belongs to the alkali metal group of chemical elements. It is represented by the symbol Li, and it has the atomic number 3. Under standard conditions it is the lightest metal and the least dense solid element. Like all alkali metals, lithium is highly...
) in lithium battery
Lithium battery
Lithium batteries are disposable batteries that have lithium metal or lithium compounds as an anode. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5 V to about 3.7 V, over twice the voltage of an ordinary zinc–carbon battery or alkaline battery...
materials. Building on his work designing and operating his one-Ångström
Ångström
The angstrom or ångström, is a unit of length equal to 1/10,000,000,000 of a meter . Its symbol is the Swedish letter Å....
microscope (OÅM), O'Keefe produced the design for the LBNL TEAM (transmission electron aspheric microscope) able to resolve atoms in the deep sub-Ångström resolution region (less than 0.5 Å) using a hardware electron-wave phase-corrector (Cs corrector) in combination with a coherence-enhancing electron-beam monochromator.